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1. Multi-Agent Reinforcement
Learning



Multi-Agent Reinforcement Learning (MARL)
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2. Generalisation in MARL



+ Learned behaviour typically highly task-specific

+ Can be desirable, but often limiting applicability in real-world tasks



+ Learned behaviour typically highly task-specific
+ Can be desirable, but often limiting applicability in real-world tasks

+ Tasks require robustness and generalisation capabilities to varying circumstances

Figure 2: Applications: distributed robotic logistics, autonomous vehicles and rescue robots.



What Does Generalisation Mean?
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+ (MA)RL lacks unified view on generalisation
+ Train joint policy 7 in a set of training tasks and generalise to testing tasks

+ But what is the relationship between tasks in Tiain and Trest?

— need assumptions on task similarity



Task Generalisation in MARL

Challenge task: Multi-robot warehouse navigation '

+ Agents need to navigate a warehouse to collect and deliver shelves

+ Generalise to different layouts of warehouses
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TEnvironment available at https://github. com/uoe-agents/robotic-warehouse
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3. Preliminary Experiments
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Generalisation Experiments

+ Goal: identify the limitations of existing approaches

« Train agents using independent synchronous Advantage Actor-Critic (IA2C)
+ Train in tasks of similar layout but varying height of blocks of shelves

+ Evaluate based on zero-shot generalisation after 50M timesteps of training

+ Investigate the impact on generalisation of
1. Observation encoding
2. Domain randomisation (train in set of tasks)
3. Neural network architectures



Generalisation Experiments - Observation Encoding

Default observations
+ Absolute x- and y-coordinate of agent
+ 3 x 3 grid centered on agent including

+ Agents: load, direction, on "highway"
+ Shelves: requested
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Generalisation Experiments - Observation Encoding

Default observations Image observations
+ Absolute x- and y-coordinate of agent « Stack of binary information
+ 3 x 3 grid centered on agent including «+ All information is relative

+ Agents: load, direction, on "highway"
+ Shelves: requested
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Generalisation Experiments - Domain Randomisation

No DR: train in single task (column
height of 8 - bottom left)

DR: train in set of tasks with column
height 3 — 10




Generalisation Experiments - Observations and DR Results
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Generalisation Experiments - Observations and DR Results

1.0
—— IA2C +coord (8h)
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Generalisation Experiments - Observations and DR Results
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+ Observations with coordinates only generalise with DR unlike image observations
+ DR improves generalisation in all cases



Generalisation Experiments - Network Architecture Results

+ Recurrent networks
+ Commonly applied in partially observable tasks
+ Improve performance of agents (but not generalisation specific)
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Generalisation Experiments - Network Architecture Results

+ Recurrent networks
+ Commonly applied in partially observable tasks
+ Improve performance of agents (but not generalisation specific)

+ Convolution neural networks
+ CNNs did not make significant difference by themselves
+ But CNNs allowed to train on larger image observations
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Generalisation Experiments - Failure Case
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How To Bridge This Gap?
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Promising directions:

1. Reason over high-level information (relational/ neurosymbolic and hierarchical RL)
2. Allow for limited finetuning in testing tasks
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Generalisation Finetun Result
~—— |A2C (finetune)
1A2C (from scratch)
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+ Representations are valuable and generalise with limited finetuning!

+ Finetuned agents outperform agents trained in harder task from scratch

— Opportunity for curriculum learning
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4. Conclusion




Conclusion

+ We demonstrated the challenge of generalisation in MARL

+ Existing approaches are sensitive to task-specific details in observations
— Zero-shot generalisation quickly reaches its limits

+ Finetuning experiments demonstrate representations can generalise with limited
training in new tasks

+ Future directions

1. Few-shot generalisation with finetung in testing tasks (e.g. meta RL)
2. Condition policy on high-level information (hierarchical and relational RL, neurosymbolic
models)
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Feel free to reach out to me!

https:/www.lukaschaefer.com/
|.schaefer@ed.ac.uk
@LukasSchaefer96
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