Task Generalisation in Multi-Agent Reinforcement Learning

AAMAS 2022, Doctoral Consortium

Lukas Schäfer

PhD student, University of Edinburgh

May 9, 2022

1. Multi-Agent Reinforcement Learning

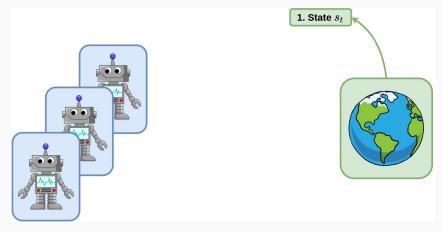


Figure 1: Multi-agent reinforcement learning loop

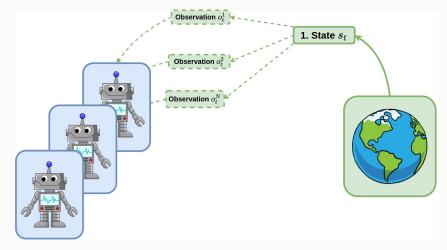


Figure 1: Multi-agent reinforcement learning loop

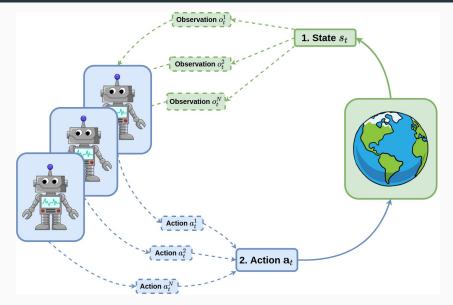


Figure 1: Multi-agent reinforcement learning loop

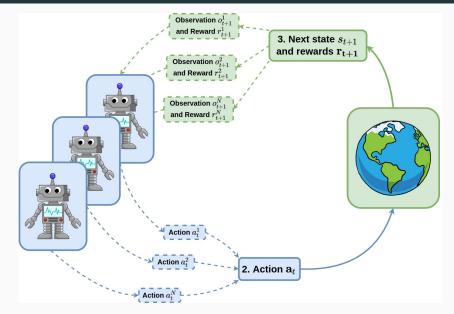


Figure 1: Multi-agent reinforcement learning loop

2. Generalisation in MARL

Motivation

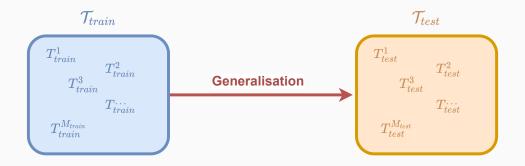
- · Learned behaviour typically highly task-specific
- · Can be desirable, but often limiting applicability in real-world tasks

Motivation

- · Learned behaviour typically highly task-specific
- · Can be desirable, but often limiting applicability in real-world tasks
- · Tasks require robustness and generalisation capabilities to varying circumstances

Figure 2: Applications: distributed robotic logistics, autonomous vehicles and rescue robots.

What Does Generalisation Mean?

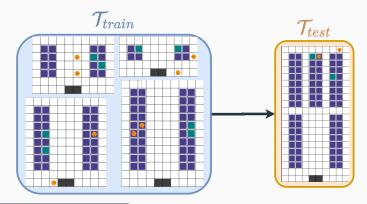


- (MA)RL lacks unified view on generalisation
- Train joint policy π in a set of training tasks and generalise to testing tasks
- But what is the relationship between tasks in T_{train} and T_{test} ? \rightarrow need assumptions on task similarity

Task Generalisation in MARL

Challenge task: Multi-robot warehouse navigation ¹

- · Agents need to navigate a warehouse to collect and deliver shelves
- · Generalise to different layouts of warehouses



¹Environment available at https://github.com/uoe-agents/robotic-warehouse

3. Preliminary Experiments

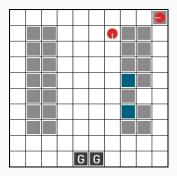
• Goal: identify the limitations of existing approaches

- Goal: identify the limitations of existing approaches
- Train agents using independent synchronous Advantage Actor-Critic (IA2C)
- Train in tasks of similar layout but varying height of blocks of shelves
- · Evaluate based on zero-shot generalisation after 50M timesteps of training

- Goal: identify the limitations of existing approaches
- Train agents using independent synchronous Advantage Actor-Critic (IA2C)
- Train in tasks of similar layout but varying height of blocks of shelves
- · Evaluate based on zero-shot generalisation after 50M timesteps of training
- · Investigate the impact on generalisation of
 - 1. Observation encoding
 - 2. Domain randomisation (train in set of tasks)
 - 3. Neural network architectures

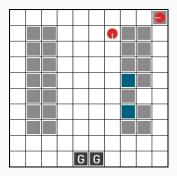
Default observations

- · Absolute x- and y-coordinate of agent
- * 3 \times 3 grid centered on agent including
 - · Agents: load, direction, on "highway"
 - · Shelves: requested



Default observations

- Absolute x- and y-coordinate of agent
- * 3 \times 3 grid centered on agent including
 - · Agents: load, direction, on "highway"
 - · Shelves: requested



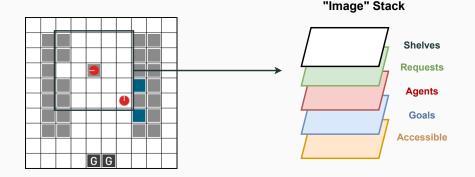
Generalisation Experiments - Observation Encoding

Default observations

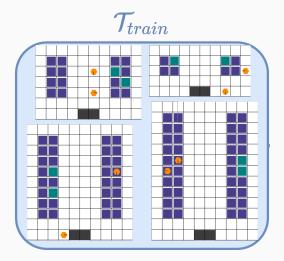
- Absolute x- and y-coordinate of agent
- * 3×3 grid centered on agent including
 - · Agents: load, direction, on "highway"
 - · Shelves: requested

Image observations

- Stack of binary information
- · All information is relative



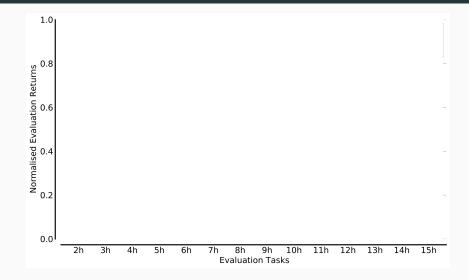
Generalisation Experiments - Domain Randomisation



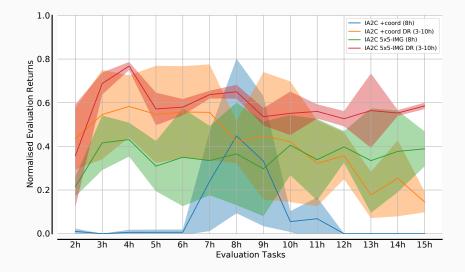
No DR: train in single task (column height of 8 - bottom left)

DR: train in set of tasks with column height 3 - 10

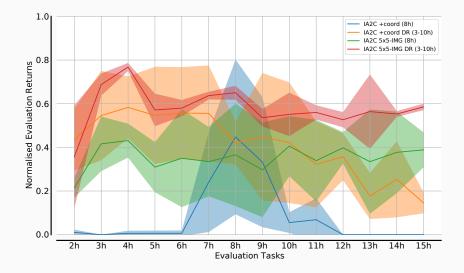
Generalisation Experiments - Observations and DR Results



Generalisation Experiments - Observations and DR Results



Generalisation Experiments - Observations and DR Results



- · Observations with coordinates only generalise with DR unlike image observations
- · DR improves generalisation in all cases

Generalisation Experiments - Network Architecture Results

Recurrent networks

- · Commonly applied in partially observable tasks
- · Improve performance of agents (but not generalisation specific)

Generalisation Experiments - Network Architecture Results

Recurrent networks

- · Commonly applied in partially observable tasks
- · Improve performance of agents (but not generalisation specific)

Convolution neural networks

· CNNs did not make significant difference by themselves

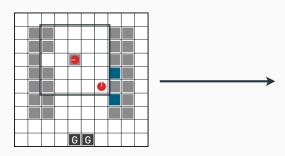
Generalisation Experiments - Network Architecture Results

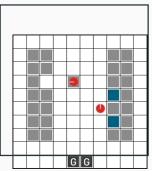
Recurrent networks

- · Commonly applied in partially observable tasks
- · Improve performance of agents (but not generalisation specific)

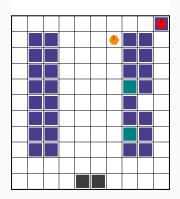
Convolution neural networks

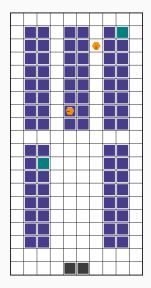
- · CNNs did not make significant difference by themselves
- But CNNs allowed to train on larger image observations



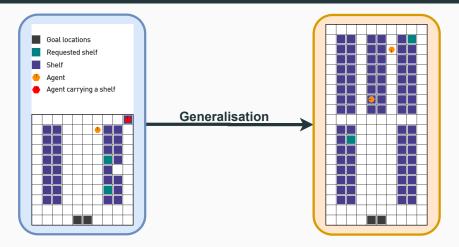


Generalisation Experiments - Failure Case





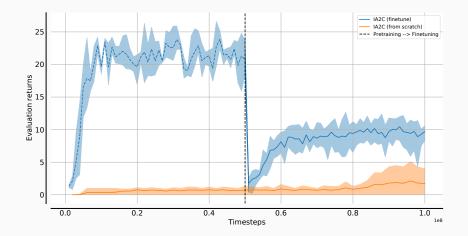
How To Bridge This Gap?



Promising directions:

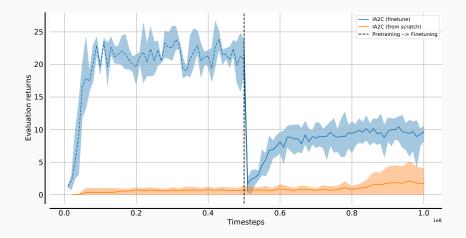
- 1. Reason over high-level information (relational/ neurosymbolic and hierarchical RL)
- 2. Allow for limited finetuning in testing tasks

Generalisation Finetuning Result



\rightarrow Opportunity for $\ensuremath{\textit{curriculum learning}}$

Generalisation Finetuning Result



- · Representations are valuable and generalise with limited finetuning!
- · Finetuned agents outperform agents trained in harder task from scratch
- \rightarrow Opportunity for $\mbox{curriculum learning}$

4. Conclusion

- · We demonstrated the challenge of generalisation in MARL
- Existing approaches are sensitive to task-specific details in observations \rightarrow Zero-shot generalisation quickly reaches its limits
- Finetuning experiments demonstrate representations can generalise with limited training in new tasks
- Future directions
 - 1. Few-shot generalisation with finetung in testing tasks (e.g. meta RL)
 - Condition policy on high-level information (hierarchical and relational RL, neurosymbolic models)

Feel free to reach out to me!

https://www.lukaschaefer.com/ I.schaefer@ed.ac.uk @LukasSchaefer96