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1. Multi-Agent Reinforcement
Learning



Multi-Agent Reinforcement Learning (MARL)

Figure 1: Multi-agent reinforcement learning loop
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2. Generalisation in MARL



Motivation

• Learned behaviour typically highly task-specific

• Can be desirable, but often limiting applicability in real-world tasks

• Tasks require robustness and generalisation capabilities to varying circumstances

Figure 2: Applications: distributed robotic logistics, autonomous vehicles and rescue robots.
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What Does Generalisation Mean?

Generalisation

• (MA)RL lacks unified view on generalisation

• Train joint policy π in a set of training tasks and generalise to testing tasks

• But what is the relationship between tasks in Ttrain and Ttest?
→ need assumptions on task similarity
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Task Generalisation in MARL

Challenge task: Multi-robot warehouse navigation 1

• Agents need to navigate a warehouse to collect and deliver shelves

• Generalise to different layouts of warehouses

 

1Environment available at https://github.com/uoe-agents/robotic-warehouse
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3. Preliminary Experiments



Generalisation Experiments

• Goal: identify the limitations of existing approaches

• Train agents using independent synchronous Advantage Actor-Critic (IA2C)

• Train in tasks of similar layout but varying height of blocks of shelves

• Evaluate based on zero-shot generalisation after 50M timesteps of training

• Investigate the impact on generalisation of
1. Observation encoding
2. Domain randomisation (train in set of tasks)
3. Neural network architectures
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Generalisation Experiments - Observation Encoding

Default observations

• Absolute x- and y-coordinate of agent
• 3× 3 grid centered on agent including

• Agents: load, direction, on "highway"
• Shelves: requested

Image observations

• Stack of binary information

• All information is relative
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Generalisation Experiments - Domain Randomisation

 

No DR: train in single task (column
height of 8 - bottom left)

DR: train in set of tasks with column
height 3− 10
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Generalisation Experiments - Observations and DR Results

• Observations with coordinates only generalise with DR unlike image observations
• DR improves generalisation in all cases
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Generalisation Experiments - Network Architecture Results

• Recurrent networks
• Commonly applied in partially observable tasks
• Improve performance of agents (but not generalisation specific)

• Convolution neural networks
• CNNs did not make significant difference by themselves

• But CNNs allowed to train on larger image observations
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Generalisation Experiments - Failure Case
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How To Bridge This Gap?

Generalisation

Promising directions:

1. Reason over high-level information (relational/ neurosymbolic and hierarchical RL)
2. Allow for limited finetuning in testing tasks
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Generalisation Finetuning Result
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• Representations are valuable and generalise with limited finetuning!
• Finetuned agents outperform agents trained in harder task from scratch

→ Opportunity for curriculum learning
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4. Conclusion



Conclusion

• We demonstrated the challenge of generalisation in MARL

• Existing approaches are sensitive to task-specific details in observations
→ Zero-shot generalisation quickly reaches its limits

• Finetuning experiments demonstrate representations can generalise with limited
training in new tasks

• Future directions
1. Few-shot generalisation with finetung in testing tasks (e.g. meta RL)
2. Condition policy on high-level information (hierarchical and relational RL, neurosymbolic

models)
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Feel free to reach out to me!

https://www.lukaschaefer.com/
l.schaefer@ed.ac.uk
@LukasSchaefer96
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