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Individual exploration of movement

Motivational Problem

Joint exploration of cooperation
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Ensemble Value Functions for Multi-Agent Exploration (EMAX)

● Plug-and-play approach to 

extend value-based MARL 

algorithms

● Each agent trains an 

ensemble of value functions
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EMAX – Exploration Policy

● Disagreement of value 

estimates is large for states 

which require coordination

● Use disagreement in UCB 

exploration policy to guide 

exploration
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EMAX – Independent Robust Target Estimates
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EMAX - Robust Target Estimates with Value Decomposition
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Evaluation with Deep Value-Based MARL Algorithms

MARL Algorithms

● IDQN, VDN, QMIX

● MAVEN (exploration-focused 

extension of QMIX)

● IDQN, VDN, QMIX + EMAX
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Evaluation Results: Aggregated
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Analysis: Training Stability

Do ensemble target values stabilise

the optimisation of trained value 

functions?

→ Inspect stability of gradients:

𝐶𝑉𝑎𝑅 ∇′ = 𝔼 ∇′ ∇′ ≥ 𝑉𝑎𝑅95%(∇
′)

∇𝑡
′= ∇𝑡+1 − |∇𝑡|



Contributions:

1. Train ensembles of value functions to guide

exploration using uncertainty of value estimates

and compute more robust target estimates

2. EMAX is plug-and-play and can significantly

improve training stability and sample efficiency of

value-based MARL algorithm

Ensemble Value Functions for Efficient 
Exploration in Multi-Agent Reinforcement 

Learning

https://arxiv.org/abs/2302.03439
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