Ensemble Value Functions for Efficient Exploration in Multi-Agent Reinforcement Learning

Lukas Schäfer, Oliver Slumbers, Stephen McAleer, Yali Du, Stefano V. Albrecht, David Mguni

International Conference on Autonomous Agents and Multiagent Systems Adaptive and Learning Agents Workshop

Motivational Problem

Individual exploration of movement

Joint exploration of cooperation

Ensemble Value Functions for Multi-Agent Exploration (EMAX)

- Plug-and-play approach to extend value-based MARL algorithms
- Each agent trains an ensemble of value functions

EMAX – Exploration Policy

- Disagreement of value estimates is large for states which require coordination
- Use disagreement in UCB exploration policy to guide exploration

 $Q_i^{ ext{mean}}(h_i,a_i) + eta Q_i^{ ext{std}}(h_i,a_i)$ $Q_i^1(h_i,a_i) \hspace{0.1 in} \cdots \hspace{0.1 in} Q_i^K(h_i,a_i)$ Agent i h_i a_i

EMAX – Independent Robust Target Estimates

EMAX - Robust Target Estimates with Value Decomposition

Evaluation with Deep Value-Based MARL Algorithms

MARL Algorithms

- IDQN, VDN, QMIX
- MAVEN (exploration-focused extension of QMIX)
- IDQN, VDN, QMIX + EMAX

Do ensemble target values stabilise the optimisation of trained value functions?

→ Inspect stability of gradients: $CVaR(\nabla') = \mathbb{E}[\nabla' | \nabla' \ge VaR_{95\%}(\nabla')]$ $\nabla'_t = |\nabla_{t+1}| - |\nabla_t|$

Ensemble Value Functions for Efficient Exploration in Multi-Agent Reinforcement Learning

https://arxiv.org/abs/2302.03439

Contributions:

- 1. Train ensembles of value functions to guide exploration using uncertainty of value estimates and compute more robust target estimates
- 2. EMAX is plug-and-play and can significantly improve training stability and sample efficiency of value-based MARL algorithm

