Decoupled Reinforcement Learning to Stabilise Intrinsically-Motivated Exploration

Lukas Schäfer, Filippos Christianos, Josiah P. Hanna, Stefano V. Albrecht

International Conference on Autonomous Agents and Multi-Agent Systems 2022

Autonomous Agents

RL: Exploration and Exploitation

Intrinsically-Motivated Exploration

Optimise for combined reward signal $r = r^e +$ extrinsic reward (task objective)

intrinsic reward (exploration objective)

Challenges

- 1. Non-stationary reward shaping with r^i
- 2. Sensitivity to scaling factor λ
- 3. Sensitivity to rate of decay of r^i

Task-specific challenges and sensitivity require extensive hyperparameter search → Already biased exploration!

Decoupled Reinforcement Learning (DeRL)

Decoupled Reinforcement Learning (DeRL)

RL Baselines (w/o and w/ intrinsic rewards)

- Advantage Actor-Critic (A2C)
- Proximal Policy Optimisation (PPO)

DeRL (π_{β} trained with A2C and intrinsic rewards)

- DeA2C: π_e trained with A2C
- DePPO: π_e trained with PPO
- DeDQN: π_e trained with DQN

Intrinsic rewards

- Count: state counts
- Hash-Count: count of state hashes
- ICM: Intrinsic Curiosity Module
- **RND:** Random Network Distillation
- **RIDE:** Rewarding Impact-Driven Exploration

Evaluation - Environments

DeepSea environment

Hallway environment

Evaluation – Normalised Returns

DeepSea

Evaluation – Sensitivity to Intrinsic Reward Scale

DeepSea 10

Hallway $N_l = N_r = 10$

Decoupled Reinforcement Learning to Stabilise Intrinsically-Motivated Exploration

Arxiv: https://arxiv.org/abs/2107.08966 Code: https://github.com/uoe-agents/derl

Contributions:

- 1. We demonstrate the sensitivity of intrinsicallymotivated exploration to hyperparameters.
- 2. We propose to train decoupled policies for exploration and exploitation to stabilise returns.

See us during slots 1A5-3 (Day 1) and 3C1-2 (Day 3)

