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Intrinsically-Motivated Exploration

Optimise for combined reward signal r =+ Art

+ Intrinsic reward (exploration objective)

Challenges

1. Non-—stationary reward shaping with 7
2. Sensitivity to scaling factor 4

3. Sensitivity to rate of decay of r*

Task-specific challenges and sensitivity require extensive hyperparameter search
—> Already biased exploration!
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Decoupled Reinforcement Learning (DeRL)
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Decoupled Reinforcement Learning (DeRL)

Algorithm Decoupled Reinforcement Learning

Initialise: parameters ¢, € and g
D10
10
forep =0,...,Nep do
fort=0,...,T do
ar ~ mg(st)
Stels rfﬁ<— environment step with a; D

Update 73 using RL with intrinsic rewards ————
DHDU(staf:r?‘:St+l) 4

le—i+1
if i mod Tpe. = 0 then
Update 7, using off-policy RLon 9 €———
end if
end for
end for
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Follow exploration policy 7g

Update exploration policy

. Store experience with extrinsic rewards in D

Update exploitation policy m, from off-policy

experience in D generated by mg



Evaluation - Algorithms

RL Baselines (w/o0 and w/ intrinsic rewards) Intrinsic rewards

® Advantage Actor-Critic (A2C) ® Count: state counts
® Proximal Policy Optimisation (PPO) Hash-Count: count of state hashes
ICM: Intrinsic Curiosity Module

RND: Random Network Distillation

RIDE: Rewarding Impact-Driven Exploration

DeRL (rg trained with A2C and intrinsic rewards)

® DeA2C: m, trained with A2C
® DePPO: m, trained with PPO
® DeDON: m, trained with DON
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Evaluation - Environments

—

Hallway environment

DeepSea environment
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Evaluation - Normalised Returns
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Evaluation - Sensitivity to Intrinsic Reward Scale
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Decoupled Reinforcement Learning to
Stabilise Intrinsically-Motivated Exploration

Arxiv: https://arxiv.org/abs/2107.08966
Code: https://github.com/uoe-agents/derl

Contributions:

1. We demonstrate the sensitivity of intrinsically-
motivated exploration to hyperparameters.

2. We propose to train decoupled policies for
exploration and exploitation to stabilise returns.

See us during slots 1A5-3 (Day 1) and 3C1-2 (Day 3)
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