Ensemble Value Functions for Efficient Exploration in Multi-Agent Reinforcement Learning

Lukas Schäfer, Oliver Slumbers, Stephen McAleer, Yali Du, Stefano V. Albrecht, David Mguni

See paper for more details!

Problem Setting

Problem: Random exploration is very inefficient in discovering cooperation in multi-agent reinforcement learning (MARL)

Independent Exploration

Cooperative Exploration

Question: How to focus exploration on states that require coordination?

Summary and Contributions

Idea: Rewards in cooperative states vary depending on the actions of other agents \rightarrow Use variability of value estimates to focus exploration on cooperative states and actions

Ensemble Value Functions for Multi-Agent Exploration (EMAX)

1. Disagreement of value estimates across the ensemble to guide exploration towards cooperative states
2. Average value estimates as robust target values

Plug-and-play extension for value-based MARL algorithms. Across 21 tasks, EMAX improves the final evaluation returns of IDQN, VDN, and QMIX by $53 \%, 36 \%$, and 498%, respectively.

Ensemble Value Functions for Multi-Agent Exploration

Agent i trains ensemble of K value functions $\left\{\boldsymbol{Q}_{\boldsymbol{i}}^{k}\right\}_{\boldsymbol{k}=1}^{K}$
Exploration policy: $\pi_{i}^{\text {expl }}\left(h_{i}\right) \in \operatorname{argmax} Q_{i}^{\text {mean }}\left(h_{i}, a\right)+\beta Q_{i}^{s t d}\left(h_{i}, a\right)$
Evaluation policy: majority vote of greedy actions across the ensemble

Independent target computation: $r+\gamma \max _{a_{i}^{\prime}} Q_{i}^{\text {mean }}\left(h_{i}^{\prime},, a_{i}^{\prime}\right)$

Value decomposition: Aggregate k th value function of all agents to joint state-action value estimate $Q_{t o t}^{k}$ and target values with the aggregation of $Q_{1}^{\text {mean }}\left(h_{1}^{\prime}, a_{1}^{\prime}\right), \ldots, Q_{N}^{\text {mean }}\left(h_{N}^{\prime}, a_{N}^{\prime}\right)$

