
Efficient Exploration in Single-Agent and
Multi-Agent Deep Reinforcement Learning

Lukas Schäfer
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy
Institute of Perception, Action and Behaviour

School of Informatics
The University of Edinburgh

2024

Abstract

This thesis is concerned with reinforcement learning (RL) in which decision-
making agents learn desirable behaviour by interacting with their environment
and receiving feedback in the form of rewards. Learning decision making from
interactions in this way is different from most machine learning paradigms in that
RL agents need to both learn to collect data that informs their future decisions
and learn the desired behaviour that maximises cumulative rewards. These pro-
cesses are referred to as exploration and exploitation. In this thesis, we focus on
the challenge of exploration for RL and propose novel solutions to guide agents
towards efficient data collection and learn to balance exploration and exploitation.

The first part of this thesis is concerned with exploration for single-agent
reinforcement learning in sparse-reward environments. In this setting, a single
decision-making agent is learning from interactions with its environment and
rarely receives (non-zero) rewards from the environment. A common approach to
explore in such challenging environments where informative rewards are sparse
is to introduce intrinsically computed rewards that incentivise agents to explore.
However, by introducing this second optimisation objective, the agent needs to
explicitly and carefully balance the exploration objective of intrinsic rewards and
the exploitation objective of extrinsic rewards of the environment. We propose de-
coupled reinforcement learning (DeRL) to address this challenge. In DeRL, agents
learn separate policies for both exploration and exploitation to account for the
different objectives of these policies. The exploration policy is trained with intrin-
sic rewards and used to gather informative data for the exploitation policy while
the exploitation policy is trained on the gathered data to solve the task at hand.
We show that DeRL outperforms existing intrinsically motivated exploration ap-
proaches in terms of sample efficiency and robustness to hyperparameters that
are responsible for the trade-off between exploration and exploitation.

For the subsequent parts of this thesis, we will shift our focus to exploration
in the setting of multi-agent reinforcement learning (MARL). In MARL, multiple
decision-making agents concurrently learn from interactions with their shared en-
vironment. In this thesis, we are concerned with environments that require agents
to cooperate, i.e. agents need to learn to coordinate their actions to achieve their
goals. This additional consideration in contrast to single-agent RL further com-
plicates the learning process and exploration which now needs to account for

iii

the interactions between agents. The first contribution of this thesis to MARL
is a comprehensive benchmark of ten algorithms across a set of 25 cooperative
common-reward environments. As part of this study, we open-source EPyMARL,
a codebase for MARL that extends the previously existing PyMARL codebase
with more algorithms, support for more environments, and configurability. Follow-
ing the analysis of this benchmark, we identify remaining challenges in MARL to
efficiently train agents to cooperate in environments where informative feedback
is sparse. Motivated by this challenge, we propose shared experience actor-critic
(SEAC). SEAC leverages symmetry present in many multi-agent environments
to share experiences across agents and learn from the collective experience of all
agents using an actor-critic algorithm. In empirical experiments, we establish that
experience sharing can significantly improve the efficiency of learning and help
agents to learn skills simultaneously. However, the benefits of experience sharing
are less pronounced for value-based algorithms where agents do not learn explicit
policies. To guide exploration for value-based MARL algorithms, we propose
ensemble value functions for multi-agent exploration (EMAX). EMAX trains an
ensemble of value functions for each agent and steers the exploration of agents to-
wards states and actions that might require cooperation between multiple agents.
By doing so, agents learn to coordinate their actions more efficiency, and we show
that EMAX as an extension of three common value-based MARL algorithms can
significantly improve the sample efficiency and stability of training.

Lastly, this thesis presents a case study in which we discuss the application
of MARL to warehouse logistics automation. The chapter is the result of an
industry collaboration with Dematic GmbH for which we formalise warehouse
logistics problems, and propose a twofold solution to the scalability challenge of
this setting. Our approach leverages a hierarchical decomposition of the multi-
agent learning architecture and masks out actions that are deemed ineffective.
Together, these techniques simplify the learning objective of individual agents,
allowing MARL agents to learn more efficiently and scale to larger warehouse
instances with more agents and locations while outperforming industry-standard
heuristics and standard MARL algorithms.

iv

Lay summary

Autonomous systems become increasingly prominent in various applications, in-
cluding in autonomous driving, robotics, and industrial automation. For many of
these systems, we would like autonomous decision-making entities to be able to
learn behaviour from interactions with their environment and potentially other
decision-making entities within their environment. This thesis is concerned with
the machine learning paradigm of reinforcement learning that aims to train such
decision-making agents by trial-and-error. To be able to learn from their interac-
tions, these decision-making agents need to try many possible behaviours to learn
which ones are desirable and which ones are not. This process of trying out differ-
ent behaviours is referred to as exploration. In contrast, the process of exploiting
learned knowledge to exhibit the desirable behaviour as best as possible is re-
ferred to as exploitation. In this thesis, we focus on the challenge of exploration
in reinforcement learning and propose novel solutions to guide agents towards
efficient data collection and learn to balance exploration and exploitation.

We first propose a novel approach to exploration in single-agent reinforcement
learning that decouples the exploration and exploitation objectives of the agent.
Our approach allows agents to learn separate strategies for exploration, i.e. to
gather data that informs their learning, and exploitation which corresponds to
learning a strategy to solve the respective decision-making task. We show that
our approach can improve the efficiency of learning and the robustness of the
agent.

We then shift our focus to multi-agent reinforcement learning, where multiple
decision-making agents concurrently learn. These agents need to cooperate to
solve challenging tasks. For example, one might envision a problem that requires
multiple autonomous robots to jointly pick-up a heavy object, which is too heavy
for each robot to carry it by themselves. We propose two novel approaches to ex-
ploration in multi-agent reinforcement learning that makes learning more efficient.
The first approach leverages the similarity of data gathered by each agent. Fol-
lowing this similarity of data across agents, we show that agents can learn more
efficiently by sharing their individual experiences with each other. The second
approach relies on agents maintaining multiple predictions of future outcomes
following their strategies. We can use these multiple predictions to determine in
which situations there might be a possibility for agents to cooperate with each

v

other. We leverage this information to guide agents towards such situations, lead-
ing to agents to trying to cooperate more often, and as a consequence help them
to learn how to cooperate more efficiently.

Lastly, we look at the real-world problem of automating warehouse logistics
in which robots might navigate through a warehouse to pick-up and deliver items
with the objective of completing orders. We formally define these problems and
develop simulators that allow us to train decision-making agents to solve these
tasks. To make learning more efficient, we simplify the task for each agent by
first assigning each agent a part of the warehouse to navigate to before letting
each agent individually decide which task to complete within their assigned part
of the warehouse. Through this simplification, agents need to consider only a
part of the many possible actions they could take within the warehouse, which
simplifies their learning process. We show that our proposed approach improves
the efficiency of learning and scalability to large warehouse instances compared
to standard learning approaches and heuristic industry-standard solutions.

vi

Acknowledgements

This thesis would not have been possible without the help and support of many
people whom I am deeply grateful to.

First and foremost, I would like to thank my supervisor Stefano Albrecht. Al-
ready during my master’s studies, I experienced Stefano as a reliable and support-
ive supervisor who guided me through the PhD application process. Throughout
my PhD, this image of Stefano got increasingly reinforced. Whenever I was look-
ing for advice or last-minute feedback towards submission deadlines (or thesis
chapters), Stefano made sure to find time and help out. Beyond his reliability,
I greatly appreciate how Stefano always encouraged me to carve my own path,
even if this meant that I would temporarily leave to pursue research internships
elsewhere. By being both reliable and supportive whenever needed, and giving
myself the freedom to follow my own ideas, Stefano struck the right balance that
helped me to grow as a researcher and individual during the past years. Lastly,
I would like to thank Stefano for providing me and Filippos with the unique op-
portunity to write a textbook together. Throughout the entire journey, Stefano
treated us as equal partners and trusted in our judgement and ability to commu-
nicate our understanding of the field. I consider myself very fortunate to have
been a PhD student under Stefano and am deeply grateful for all the support and
opportunities he has given me.

I would also like to thank everyone at the Autonomous Agents Research Group
in Edinburgh for creating a fun and productive environment to learn and work in.
Everyone has contributed to making my time in Edinburgh an experience that
I will always look back on fondly. In particular, I would like to thank Filippos,
Georgios, Arrasy, and Samuel for being great friends and colleagues throughout
my PhD. Our discussions constantly sparked new inspiration, motivation, and
encouragement without which this journey would have not been the same. I also
thank my office mates in Edinburgh, especially Asif, Eric, Nick, Ibrahim, Resul,
Adarsh, Mahesh, and Elliot, for all our shared conversations, lunch breaks, and
much needed distractions.

I am deeply grateful to Tom Spink without whom I would have not embarked
on this journey. As my personal tutor during my master’s studies, Tom calmly and
patiently responded to my endless flood of anxious questions about the process of
doing a PhD and how to apply to PhD programs. His advice has been invaluable,

vii

and most importantly, he reassured me to be confident in myself and take the
leap to apply. For his reassurance, patience, and advice at a time when I felt
anxious and overwhelmed, I am deeply grateful.

I am fortunate to have had the opportunity to collaborate with many great
researchers during internships from whom I have learned a lot. I would like to
thank Aleks who has been a great mentor, collaborator, and friend during and
after my internship with Dematic. I greatly enjoyed our close collaboration and
many discussions on even seemingly small implementation details and decisions,
and I am grateful that he always made sure to find time for discussions despite
being on opposite sides of the planet. I thank all my collaborators and friends
at Huawei who contributed to an intense but productive summer. Special thanks
goes to David and Jun for their mentorship and perspective, as well as to Alexan-
dre, Matthieu, Juliusz, and Lisa for our discussions on research and life who have
made the experience more collaborative and enjoyable. I would also like to thank
the entire game intelligence team at Microsoft Research in Cambridge and my col-
laborators at XEmTech. They showed me how kind, supportive, and productive
a work environment can be, all while teaching me about many technical, research,
and soft skills. I am particularly grateful to Sam for his unwavering support and
mentorship during and after my internship whose insightfulness is only exceeded
by his kindness. I would also like to express special thanks to Sergio, Dave, Anssi,
and Raluca for teaching me how to be a better engineer, to Yuhan, Anssi, and
Dave for making sure that we somehow got all results together in time for a
submission, to Logan and Andrea for letting me find my own path within the
project, and to my fellow interns Tarun, Gunshi, Eloi, and Adam for the many
conversations and discussions we had together that inspired, and sparked ideas.

I would also like to thank Prof. Subramanian Ramamoorthy and Prof. Karl
Tuyls for examining this thesis. I am grateful for their thoughtful feedback and
suggestions that have helped to improve the quality of this thesis, and for making
the daunting process of the viva feel less intimidating and even enjoyable. I would
also like to thank the Institute of Perception, Action and Behaviour for travel
funding that allowed me to attend conferences and workshops during my PhD,
and the organisers of the Heidelberg Laureate Forum who provided me with the
unique opportunity to meet inspiring laureates and ambitious researchers. I am
grateful for the mentorship of Marc Lanctot whose guidance on research and
career advice have been invaluable.

viii

On a personal note, I would like to thank my parents and brothers for their
unconditional love and support. They sparked my curiosity, always encouraged
me to ask questions, showed me the beauty that lies in understanding the world,
and supported me to pursue my dreams and ambitions, all while keeping me
grounded. I am deeply grateful for everything they have done for me. Lastly,
I would like to thank Chentian for being a constant source of joy, love, and
support throughout my PhD. She showed me how to be a more patient, kind,
and considerate person, all while being endlessly patient and supportive of me.
I am incredibly grateful for all the memories we have shared together and look
forward to many more to come.

ix

Declaration
I declare that this thesis was composed by myself, that the work contained herein
is my own except where explicitly stated otherwise in the text, and that this work
has not been submitted for any other degree or professional qualification except
as specified.

(Lukas Schäfer)

x

Contents

Acronyms xxv

1 Introduction 1
1.1 Scope and Limitations . 5
1.2 Thesis Outline and Contributions 6
1.3 Publications . 9

2 Problem Settings and Preliminary Algorithms 13
2.1 Markov Decision Processes . 13
2.2 Partially Observable Markov Decision Processes 14
2.3 Single-Agent Reinforcement Learning 15

2.3.1 Value Functions . 15
2.3.2 Q-Learning and Deep Q-Networks 16
2.3.3 Policy Gradient Algorithms 19

2.4 Partially Observable Stochastic Games 21
2.5 Decentralised Partially Observable Markov Decision Processes . . 23
2.6 Multi-Agent Reinforcement Learning 23

2.6.1 Independent Learning . 25
2.6.2 Centralised Training Decentralised Execution 26

3 Decoupled Reinforcement Learning 33
3.1 Intrinsically Motivated Exploration 37

3.1.1 Count-based Intrinsic Rewards 37
3.1.2 Prediction-based Intrinsic Rewards 38

3.2 Decoupled Reinforcement Learning 40
3.2.1 Decoupled Actor-Critic . 41
3.2.2 Decoupled Deep Q-Networks 42

3.3 Evaluation Details . 43

xi

3.3.1 Algorithms . 43
3.3.2 Environments . 44
3.3.3 Implementation Details . 45

3.4 Evaluation Results . 46
3.4.1 Hyperparameter Sensitivity 46
3.4.2 Evaluation Returns . 49
3.4.3 Exploration using only Intrinsic Rewards 51
3.4.4 Divergence Constraints . 52

3.5 Related Work . 53
3.6 Conclusion . 55

4 Benchmarking Multi-Agent Reinforcement Learning 57
4.1 Multi-Agent Environments . 59

4.1.1 Repeated Matrix Games 59
4.1.2 Multi-Agent Particle Environment 60
4.1.3 StarCraft Multi-Agent Challenge 62
4.1.4 Level-Based Foraging . 63
4.1.5 Multi-Robot Warehouse 64

4.2 Evaluation . 65
4.2.1 Evaluation Protocol . 65
4.2.2 Parameter Sharing . 66
4.2.3 Hyperparameter Optimisation 67
4.2.4 Computational Requirements 67
4.2.5 Extended PyMARL . 67

4.3 Results . 68
4.3.1 Independent Learning . 70
4.3.2 Centralised Training Decentralised Execution 71
4.3.3 Parameter Sharing . 74

4.4 Analysis . 75
4.5 Conclusion . 77

5 Experience Sharing for Multi-Agent Reinforcement Learning 79
5.1 Shared Experience Actor-Critic 80
5.2 Formal Derivation . 82
5.3 Experiments . 85

5.3.1 Results . 88

xii

5.3.2 Analysis . 90
5.4 Shared Experience Deep Q-Networks 93
5.5 Related Work . 96
5.6 Conclusion . 98

6 Ensemble Value Functions for Multi-Agent Exploration 99
6.1 Ensemble Value Functions for Multi-Agent Exploration 103
6.2 Experimental Setup . 111
6.3 Evaluation Results . 115
6.4 Analysis and Ablations . 118

6.4.1 Training Stability . 119
6.4.2 Exploration Policy . 120
6.4.3 Evaluation Policy . 122
6.4.4 Ensemble Size . 123
6.4.5 Ablations . 125

6.5 Related Work . 126
6.6 Conclusion . 128

7 Warehouse Logistics with Multi-Agent Reinforcement Learning129
7.1 Problem Setting . 132
7.2 Warehouse Simulators . 134

7.2.1 Dematic Person-to-Goods Simulator 134
7.2.2 TA-RWARE Goods-to-Person Simulator 135

7.3 Methodology . 136
7.3.1 Action masking . 136
7.3.2 Hierarchical MARL for Order-Picking 137

7.4 Empirical Evaluation . 138
7.4.1 Algorithms . 138
7.4.2 Environment Details . 141
7.4.3 Results . 141

7.5 Related Work . 144
7.6 Conclusion . 146

8 Conclusion 149
8.1 Directions for Future Work . 152

xiii

A Decoupled Reinforcement Learning 155
A.1 Hyperparameter Optimisation . 155
A.2 Evaluation Results . 161
A.3 Hyperparameter Sensitivity . 167
A.4 KL-Divergence Constraint Regularisation 172

B Multi-Agent Deep Reinforcement Learning Benchmark 181
B.1 The EPyMARL Codebase . 181
B.2 Computational Cost . 181
B.3 SMAC Win-Rates . 182
B.4 Learning Curves in All Tasks . 183
B.5 Hyperparameter Optimisation . 183
B.6 Selected Hyperparameters . 184

C Ensemble Value Functions for Multi-Agent Exploration 191
C.1 Hyperparameter Optimisation . 191
C.2 Individual Task Evaluation Returns in Mixed-Objective Tasks . . 196
C.3 Individual Task Evaluation Returns in Cooperative Tasks 197

C.3.1 Level-Based Foraging . 197
C.3.2 Boulder-Push . 198
C.3.3 Multi-Robot Warehouse 199
C.3.4 Multi-Agent Particle Environment 200

Bibliography 201

xiv

List of Figures

1.1 Outline of the thesis and its structure. 7

2.1 Interaction loop for single-agent decision-making problems. 15
2.2 Interaction loop for multi-agent decision-making problems. 23

3.1 Decoupled reinforcement learning (DeRL) training loop. 40
3.2 Visualisation of the DeepSea and Hallway environments. 45
3.3 Average evaluation returns in DeepSea and Hallway tasks for vary-

ing scale of intrinsic rewards. 47
3.4 Average evaluation returns in DeepSea and Hallway tasks for vary-

ing rate of decay of intrinsic rewards. 48
3.5 Normalised evaluation returns for all DeepSea and Hallway tasks. 50
3.6 Evaluation returns and importance sampling weights for DeA2C

Count in a DeepSea task. 51
3.7 Evaluation returns, training returns, importance sampling weights,

and KL divergence of exploration and exploitation policy when
training DeA2C with Count intrinsic rewards in a DeepSea and
Hallway task. 52

4.1 Illustration of MPE tasks (a) speaker-listener, (b) spread, (c) ad-
versary and (d) predator-prey. 61

4.2 Examples of SMAC tasks with various team configurations and
unit types. 63

4.3 Illustrations of the open-sourced multi-agent environments: LBF
and RWARE. 64

4.4 Normalised evaluation returns for each environment. 69
4.5 Comparing normalised maximum returns of all algorithms with

and without parameter sharing. 75

xv

5.1 Motivational example for experience sharing. 79

5.2 Environments considered in the SEAC evaluation: predator prey,
sparse SMAC 3m, LBF, and RWARE. 86

5.3 Training returns in sparse-reward variations of PP and SMAC-3m. 88

5.4 Training returns in four LBF tasks. 88

5.5 Training returns in four RWARE tasks. 89

5.6 Importance weights of one SEAC agent in RWARE 10x11-2ag-hard. 91

5.7 Best vs. worst performing agents on RWARE 10x20-4ag. 91

5.8 Training returns of SEAC with different values of λ in a LBF and
RWARE task. 92

5.9 Average total returns of SEDQN and IDQN in one RWARE and
LBF task. 95

6.1 Motivational example for guiding exploration towards states that
require agent interactions. 100

6.2 Illustration of the components of the EMAX algorithm for IDQN. 104

6.3 Illustration of the value estimation of the EMAX algorithm with
value decomposition. 109

6.4 Visualisations of four multi-agent environments: (a) level-based
foraging (LBF), (b) boulder-push (BPUSH), (c) multi-robot ware-
house (RWARE), and (d) multi-agent particle environment (MPE). 112

6.5 Normalised evaluation returns and performance profiles for IDQN
with and without EMAX in 11 mixed-objective tasks. 115

6.6 Evaluation returns and performance profiles for all algorithms with
and without EMAX across 21 tasks. 116

6.7 Interquartile mean and 95% confidence intervals of normalised eval-
uation returns for all algorithms in each environment. 117

6.8 Average and standard error of gradient norm stability, measured
by the CVaR of detrended consecutive gradient norms, with and
without EMAX. 119

6.9 Evaluation metrics to evaluate the impact of the EMAX explo-
ration policy. 120

6.10 Ablation of the evaluation policy of EMAX and a comparison of
the performance of EMAX with varying ensemble sizes. 122

xvi

6.11 Average evaluation returns and confidence intervals for all baseline
algorithms with varying network sizes and EMAX. 125

6.12 EMAX ablations in a LBF and MPE task. 125

7.1 Dematic PTG and TA-RWARE GTP simulator visualisations. . . 132
7.2 3-layer hierarchical model for scalable MARL for warehouse logistics.137
7.3 Average pick rate in Dematic PTG and TA-RWARE GTP simula-

tor tasks for heuristics and MARL algorithms. 142

A.1 Average evaluation returns and confidence intervals for A2C, PPO
and DeRL with the highest achieving intrinsic reward in all DeepSea
tasks. 162

A.2 Average evaluation returns and confidence intervals for A2C, PPO
and DeRL with all intrinsic rewards in all DeepSea tasks. 163

A.3 Average evaluation returns and confidence intervals for A2C, PPO
and DeRL with the best performing intrinsic reward in all Hallway
tasks. 164

A.4 Average evaluation returns and confidence intervals for A2C, PPO
and DeRL with all intrinsic rewards in all Hallway tasks. 165

A.5 Average evaluation returns and confidence intervals for A2C, PPO
and DeRL with all intrinsic rewards in the Hallway tasks with
Nl = 30. 166

A.6 Average evaluation returns and confidence intervals for baselines
with Hash-Count, RND, and RIDE intrinsic rewards in DeepSea
10 with varying scale of intrinsic rewards. 168

A.7 Average evaluation returns and confidence intervals for A2C and
PPO with Hash-Count, RND, and RIDE intrinsic rewards in Hall-
way Nl = Nr = 10 with varying scale of intrinsic rewards. 169

A.8 Average evaluation returns and confidence intervals for A2C and
PPO with Hash-Count, RND, and RIDE intrinsic rewards in DeepSea
10 with varying rates of intrinsic reward decay. 170

A.9 Average evaluation returns and confidence intervals for A2C and
PPO with Hash-Count, RND, and RIDE intrinsic rewards in Hall-
way Nl = Nr = 10 with varying rates of intrinsic reward decay. . . 170

A.10 Evaluation returns with confidence intervals of DeRL with diver-
gence constraint regularisation in DeepSea 10 (Part 1). 172

xvii

A.11 Evaluation returns with confidence intervals of DeRL with diver-
gence constraint regularisation in DeepSea 10 (Part 2). 173

A.12 Evaluation returns with confidence intervals of DeRL with diver-
gence constraint regularisation in DeepSea 10 (Part 3). 174

A.13 Evaluation returns with confidence intervals of DeRL with diver-
gence constraint regularisation in Hallway Nl = Nr = 20 (Part
1). 174

A.14 Evaluation returns with confidence intervals of DeRL with diver-
gence constraint regularisation in Hallway Nl = Nr = 20 (Part
2). 175

A.15 Evaluation returns with confidence intervals of DeRL with diver-
gence constraint regularisation in Hallway Nl = Nr = 20 (Part
3). 176

A.16 Average evaluation returns and confidence intervals of DeA2C with
Count intrinsic reward in DeepSea 10 with varying scale of intrinsic
rewards with or without divergence constraints. 177

A.17 Average evaluation returns and confidence intervals of DeA2C with
Count intrinsic reward in Hallway Nl = Nr = 10 with varying scale
of intrinsic rewards with or without divergence constraints. 178

A.18 Average evaluation returns and confidence intervals of DeA2C with
Count intrinsic reward in DeepSea 10 with varying rate of intrinsic
rewards decay with or without divergence constraints. 178

A.19 Average evaluation returns and confidence intervals of DeA2C with
Count intrinsic reward in Hallway Nl = Nr = 10 with varying rate
of intrinsic rewards decay with or without divergence constraints. 179

B.1 Comparison of training time for all algorithms with and without
parameter sharing in all evaluation tasks. 182

B.2 Average episodic returns and confidence intervals of all algorithms
with parameter sharing in all evaluation tasks. 183

C.1 Average evaluation returns and 95% confidence intervals for IDQN
with and without EMAX in mixed-objective LBF and RWARE tasks.196

C.2 Average evaluation returns and 95% confidence intervals for all
algorithms in LBF tasks. 197

xviii

C.3 Average evaluation returns and 95% confidence intervals for all
algorithms in BPUSH tasks. 198

C.4 Average evaluation returns and 95% confidence intervals for all
algorithms in RWARE tasks. 199

C.5 Average evaluation returns and 95% confidence intervals for all
algorithms in MPE tasks. 200

xix

List of Tables

2.1 Overview of MARL algorithms and their properties. 25

3.1 Average evaluation returns in all DeepSea and Hallway tasks . . . 49

4.1 Overview of environments and properties. 60
4.2 Average returns and confidence intervals for algorithms with pa-

rameter sharing. 70
4.3 Maximum returns and confidence intervals for algorithms with pa-

rameter sharing. 71
4.4 Average returns and confidence intervals for algorithms without

parameter sharing. 72
4.5 Maximum returns and confidence intervals for algorithms without

parameter sharing. 73

5.1 Hyperparameters used for SEAC, IA2C and SNAC. 87
5.2 Average final evaluation returns and standard deviation of SEAC

and baselines on a selection of tasks. 90
5.3 Average training time of IA2C and SEAC across all evaluation tasks. 93

6.1 Average training time for algorithms with and without EMAX, and
for varying ensemble sizes. 124

6.2 Comparison of network sizes of baseline algorithms and EMAX for
varying model sizes and tasks with varying observation dimension-
ality. 124

7.1 Configuration details for the studied tasks within the Dematic
PTG and TA-RWARE environments. 140

7.2 Pick rate of heuristics and MARL algorithms in warehouse logistics
tasks. 141

xxi

A.1 Hyperparameters for A2C baseline. 156

A.2 Hyperparameters for PPO baseline. 156

A.3 Hyperparameters for Hash-Count. 157

A.4 Hyperparameters for ICM. 157

A.5 Hyperparameters for RND. 157

A.6 Hyperparameters for RIDE. 158

A.7 Hyperparameters for DeA2C. 158

A.8 Hyperparameters for DePPO. 159

A.9 Hyperparameters for DeDQN. 159

A.10 Hyperparameters for DeRL with ICM. 160

A.11 Maximum evaluation returns in the DeepSea environment with a
single standard deviation. 162

A.12 Maximum evaluation returns in the Hallway environment with a
single standard deviation. 164

A.13 Maximum evaluation returns for all algorithms and intrinsic re-
wards in DeepSea 10 with varying scale of intrinsic rewards. . . . 168

A.14 Maximum evaluation returns and standard deviations for all algo-
rithms and intrinsic rewards in Hallway Nl = Nr = 10 with varying
scale of intrinsic rewards. 169

A.15 Maximum evaluation returns and standard deviations for all al-
gorithms and count-based intrinsic rewards in DeepSea 10 with
varying rates of intrinsic reward decay. 171

A.16 Maximum evaluation returns and standard deviations for all algo-
rithms and prediction-based intrinsic rewards in DeepSea 10 with
varying rates of intrinsic reward decay. 171

A.17 Maximum evaluation returns and standard deviations for all algo-
rithms and count-based intrinsic rewards in Hallway Nl = Nr = 10
with varying rates of intrinsic reward decay. 171

A.18 Maximum evaluation returns and standard deviations for all al-
gorithms and prediction-based intrinsic rewards in Hallway Nl =
Nr = 10 with varying rates of intrinsic reward decay. 171

B.1 Maximum win-rate and confidence interval of all algorithms with
parameter sharing in all SMAC tasks. 182

xxii

B.2 Maximum win-rate and confidence interval of all algorithms with-
out parameter sharing in all SMAC tasks. 182

B.3 Range of hyperparameters considered for all algorithms and envi-
ronments. 184

B.4 Hyperparameters for IDQN with parameter sharing. 185
B.5 Hyperparameters for IDQN without parameter sharing. 185
B.6 Hyperparameters for IA2C with parameter sharing. 185
B.7 Hyperparameters for IA2C without parameter sharing. 186
B.8 Hyperparameters for IPPO with parameter sharing. 186
B.9 Hyperparameters for IPPO without parameter sharing. 186
B.10 Hyperparameters for MADDPG with parameter sharing. 187
B.11 Hyperparameters for MADDPG without parameter sharing. . . . 187
B.12 Hyperparameters for COMA with parameter sharing. 187
B.13 Hyperparameters for COMA without parameter sharing. 188
B.14 Hyperparameters for MAA2C with parameter sharing. 188
B.15 Hyperparameters for MAA2C without parameter sharing. 188
B.16 Hyperparameters for MAPPO with parameter sharing. 189
B.17 Hyperparameters for MAPPO without parameter sharing. 189
B.18 Hyperparameters for VDN with parameter sharing. 189
B.19 Hyperparameters for VDN without parameter sharing. 190
B.20 Hyperparameters for QMIX with parameter sharing. 190
B.21 Hyperparameters for QMIX without parameter sharing. 190

C.1 Hyperparameters for IDQN, VDN, QMIX and extensions with
EMAX in LBF. 192

C.2 Hyperparameters for IDQN, VDN, QMIX and extensions with
EMAX in BPUSH. 193

C.3 Hyperparameters for IDQN, VDN, QMIX and extensions with
EMAX in RWARE. 194

C.4 Hyperparameters for IDQN, VDN, QMIX and extensions with
EMAX in MPE. 195

xxiii

Acronyms

A2C advantage actor-critic. 20

AGV automated guided vehicle. 130

BPush boulder-push environment. 113

COMA counterfactual multi-agent policy gradients. 31

CTA closest task assignment; heuristic for warehouse order picking. 139

CTDE centralised training with decentralised execution. 26

CVaR conditional value-at-risk. 114

DDPG deep deterministic policy gradient. 31

DDQN double deep Q-networks. 19

DeA2C decoupled advantage actor-critic. 43

Dec-POMDP decentralised partially observable Markov decision process. 23

DeDQN decoupled deep Q-networks. 43

DePPO decoupled proximal policy optimisation. 43

DeRL decoupled reinforcement learning. 36, 40

DQN deep Q-networks. 18

EMAX ensemble value functions for multi-agent exploration. 101, 103

FM follow me; heuristic for warehouse order picking. 138

xxv

GTP Goods-to-person warehouse paradigm. 130

IA2C independent advantage actor-critic. 26, 86

ICM intrinsic curiosity module. 38

IDQN independent deep Q-networks. 26

IGM individual-global-max. 27

IL independent learning. 25

IPPO independent proximal policy optimisation. 26

IQM interquartile mean. 113

IS importance sampling. 41, 83

LBF level-based foraging. 58, 63

MAA2C multi-agent advantage actor-critic. 31

MADDPG multi-agent deep deterministic policy gradient. 31

MAPPO multi-agent proximal policy optimisation. 31

MARL multi-agent reinforcement learning. 4, 23

MDP Markov decision process. 13

MPE multi-agent particle environment. 60

PDM pick, don’t move; heuristic for warehouse order picking. 139

POMDP partially observable Markov decision process. 14

POSG partially observable stochastic game. 22

PPO proximal policy optimisation. 21

PTG Person-to-goods warehouse paradigm. 130

RIDE rewarding impact-driven exploration. 39

RL reinforcement learning. 1, 15

xxvi

RND random network distillation. 39

RNN recurrent neural network. 19

RWARE multi-robot warehouse environment. 58, 64

SEAC shared experience actor-critic. 80, 82

SEDQN shared experience deep Q-networks. 94

SMAC StarCraft multi-agent challenge. 62

SNAC shared network actor-critic; refers to IA2C with parameter sharing. 86

TA-RWARE task assignment multi-robot warehouse environment. 132

UCB upper confidence bound. 101

VDN value decomposition networks. 28

xxvii

Chapter 1

Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018) as a sub-field of machine
learning is concerned with training decision-making agents by trial-and-error.
Agents repeatedly interact with their (simulated or real) environment and receive
numerical feedback after each action that indicates how well the agent is doing.
Using this feedback, the agent can learn the desired behaviour that maximises
such feedback. RL has seen impressive results in various domains, including but
not limited to playing complex video games (Berner et al., 2019; Vinyals et al.,
2019; Wurman et al., 2022), board games (Silver et al., 2016; Bakhtin et al., 2022;
Pérolat et al., 2022), and learning control policies for robotics (Akkaya et al.,
2019; Wu et al., 2023), warehouse logistics automation (Shetty et al., 2020; Krn-
jaic et al., 2024), and autonomous driving (Kendall et al., 2019; Zhou et al., 2021).
Similar to other fields of machine learning, training RL agents in complex tasks
requires large amounts of data and computational resources. However, RL is
unique in its collection and usage of training data. Many fields of machine learn-
ing, including the majority of works in computer vision (e.g., Krizhevsky et al.,
2012; He et al., 2016; Dosovitskiy et al., 2021), natural language processing (e.g.,
Devlin et al., 2018; Brown et al., 2020; Touvron et al., 2023; Team et al., 2023b),
and recommender systems (e.g., Covington et al., 2016; He et al., 2017; Kang and
McAuley, 2018), are trained on previously generated datasets that often leverage
human-generated content such as text written by humans. These approaches in
combination with immense computational resources and technical advancements,
led to a surge in machine learning applications such as computer vision models
that can detect objects in images with high accuracy, recommendation systems
that can suggest products, films, or music one might be interested in based on

1

2 Chapter 1. Introduction

user data, and most recently large language models that power chat-based AI
assistants like ChatGPT (Brown et al., 2020).

In contrast to this approach, training RL agents typically requires the agent
to interact with its environment to collect its own data. We note that the subfield
of offline reinforcement learning (Levine et al., 2020) represents a deviation from
this paradigm. Offline RL is concerned with training RL agents from datasets of
previously collected behavioural demonstration data and, thus, does not require
nor allow the agent to gather its own data. In this thesis, we focus on the more
common “online” RL setting in which the agent needs to interact with its envi-
ronment to gather training data. This seemingly subtle difference of requiring
agents to collect their own data leads to major challenges in RL. First, the learn-
ing agent needs to solve two interconnected problems in this setting: (1) they
need to explore, i.e. to traverse the problem space of an environment, to collect
information on what behaviour might be promising, and (2) they need to exploit
this knowledge to solve the task given their current understanding of the environ-
ment. The challenge of balancing these interconnected processes is also known as
the exploration-exploitation trade-off. Second, it is highly non-trivial to identify
how the agent should behave in order to explore the environment effectively, i.e.
to gather information that is useful for solving the task. Different exploration
strategies can lead to vastly different data so the efficacy of exploration strate-
gies depends on the task at hand. Third, RL is most commonly concerned with
sequential decision making, i.e. the agent needs to make a series of decisions over
time to solve the task. This sequential nature of the problem further compli-
cates exploration as the agent needs to consider the long-term consequences of
its actions. For example, an agent might need to solve a maze by reaching a goal
location that is hidden behind a locked door. To reach the goal and receive a
reward, the agent needs to first explore the environment to find and collect the
key. However, the agent can only infer the importance of obtaining the key after
successfully using the key to open the door and reaching the goal. If the agent
collects the key but does not manage to reach the goal, it receives no feedback
that the key could be useful. These long-term consequences of actions without
immediate feedback make it challenging for the agent to learn accurate values
and how to explore effectively.

The exploration process by which the agent gathers data strongly impacts the
learning process. To learn efficiently, the agent needs to systematically explore

3

the environment to gather data that, either, directly informs the agent about the
efficacy of its actions, or helps the agent to learn more about the environment
and make better decisions in the future. Therefore, the process of exploration is
closely tied to the concept of sample efficiency in RL. Sample efficiency in RL cor-
responds to how efficient the learning process is with respect to the data acquired
during learning. This can be measured by the number of samples or environment
interactions required by the agent to solve a task or to reach a particular level
of performance. In some tasks, being more sample efficient might enable the
agent to learn a solution in fewer interactions with the environment, which can
be crucial in real-world settings, such as robotics, where data collection can be
costly and time-consuming. In other tasks, being more sample efficient might
enable the agent to reach a higher level of performance within the same number
of interactions with the environment. We emphasise that sample efficiency does
not necessarily imply that the agent needs less time to learn a solution, but rather
that the agent makes more effective use of the data it collects, or collects data
more effectively, to learn a solution. It is possible for an agent to be more sample
efficient but needing more time to learn a solution due to the learning process
requiring more computation per sample.

As a key challenge of RL, exploration has received significant attention in
the research community. A plethora of approaches have been proposed, many of
which follow one of three key ideas to encourage exploration: add random noise
to the agent’s policy (Watkins and Dayan, 1992; Silver et al., 2014; Mnih et al.,
2015; Lillicrap et al., 2016) or encourage highly stochastic policies (Ziebart et al.,
2008; Mnih et al., 2016; Haarnoja et al., 2018), maintain optimistic estimates of
outcomes of previously unvisited states or actions (Auer et al., 2002; Osband et al.,
2016a; Ciosek et al., 2019; Rashid et al., 2020a; Lee et al., 2021), and intrinsically
incentivise exploration in parts of the environment which the agent has rarely
visited or does not yet understand, akin to the concept of curiosity (Oudeyer and
Kaplan, 2008; Barto, 2013). In particular the last type of intrinsically motivated
exploration methods have been found to be highly effective in environments in
which informative feedback in the form of (non-zero) rewards is sparse (Bellemare
et al., 2016; Ostrovski et al., 2017; Taïga et al., 2020; Pathak et al., 2017; Burda
et al., 2019b). However, the addition of intrinsic motivation to the learning
process necessitates explicit balancing of the intrinsic and extrinsic rewards to
ensure that the agent does not become overly focused on exploration and neglect

4 Chapter 1. Introduction

the task at hand. The first contribution of this thesis is in answering this open
research question:

1. How can intrinsically motivated reinforcement learning agents effec-
tively balance exploration and exploitation in the single-agent setting?
After addressing this research question, we will shift our attention to multi-

agent reinforcement learning (MARL) (Albrecht et al., 2024). This field is con-
cerned with concurrently training multiple agents that interact with a shared
environment and each other, either to cooperate, compete, or a mixture of both.
Exploration in this setting is particularly challenging since agents need to adapt
their behaviour and exploration strategies to the behaviour of other agents. For
example, in a task where agents need to coordinate to pick up a heavy object,
which neither of the agents can pick up by themselves, the agents need to learn
to coordinate their actions to successfully solve the task. Formally speaking, the
action space of all agents together grows exponentially with the number of agents,
leading to a large space of actions that needs to be explored. Previous research
frequently extends single-agent exploration strategies to the multi-agent setting,
for example by integrating existing single-agent intrinsic reward formulations in
MARL (Iqbal and Sha, 2019; Schäfer, 2019) or by incentivising agents to ex-
plore the multi-agent specific coordination between agents (Wang et al., 2020b;
Zheng et al., 2021). Other research coordinates exploration of multiple agents
by providing agents with a common goal or strategy (Mahajan et al., 2019; Liu
et al., 2021b) or by identifying and starting exploration from interesting initial
states (Ryu et al., 2022). However, little research has been conducted on how to
effectively leverage the different perspectives and information of multiple agents
to improve exploration, and how to guide the exploration of agents towards states
and actions that have the potential for cooperation. In this thesis, we contribute
to filling this gap by answering the following research questions and proposing
novel algorithms to address them:

2. How can multiple learning agents share experiences with each other in
order to explore and learn more efficiently?

3. How can multiple learning agents identify states and actions with the
potential for cooperation and guide their exploration towards these states
and actions?
Lastly, this thesis will consider the real-world problem of warehouse logis-

tics (Zong et al., 2021; Yan et al., 2022) in which exploration and learning effi-

1.1. Scope and Limitations 5

ciency are a pivotal concern due to the scale of warehouses and the cost involved
in the training of such systems. We consider this setting as a case study on how
MARL can be used to efficiently train decision-making agents to coordinate and
solve real-world problems.

1.1 Scope and Limitations

To calibrate the reader’s expectations about the scope and limitations of this
thesis, we briefly discuss the focus of this thesis, and explicitly state any aspects
that are not considered in this work. We note that these alternative approaches
and research directions are important in their own right, and are not considered
in this thesis to maintain a clear focus on the research questions and contributions
outlined above.

Throughout this thesis, we focus on reinforcement learning as a fundamental
approach to learn decision-making policies for sequential decision making prob-
lems. We note that there are alternative approaches to decision making that we
do not consider in this thesis which commonly make different assumptions about
the problem. For example, imitation learning approaches learn decision making
from provided demonstrations of behaviour and, as the same suggests, learn to
imitate such demonstrated behaviour. For planning approaches, it is commonly
assumed that the agent has access to a (possibly approximate) model of the en-
vironment that allows to simulate the consequences of actions and plan ahead.
In contrast to these approaches, reinforcement learning learns decision making
from interactions with the environment and, in its most general form, does not
require a model of the environment. This type of reinforcement learning algo-
rithms is also known as model-free reinforcement learning algorithms, and stands
in contrast to model-based reinforcement learning algorithms that learn a model
of the environment as part of their learning process. Such a model might allow
model-based reinforcement learning algorithms to plan ahead, akin to planning
approaches, or learn a decision-making policy in the abstract latent space of their
learned model. In this thesis, we focus on model-free reinforcement learning algo-
rithms, in particular deep reinforcement learning algorithms, that represent their
decision making policies using deep neural networks.

The research presented in this thesis is guided by the goal of making RL more
sample efficient and the aforementioned research questions. To enable sample

6 Chapter 1. Introduction

efficient RL, agents need to gather data in a systematic way. Therefore, the goal
of sample efficiently directly relates to the algorithmic challenges of exploration
in RL. We note that the challenge of exploration gives rise to related aspects that
are motivated by objectives that are not sample efficiency. For example, there are
important safety implications for exploration, particularly in real-world systems
such as robotics, where exploratory actions might cause damage to the physical
agent or its environment. In this thesis, we focus on RL application in simulated
environments and algorithmic innovations to improve the sample efficiency of RL
agents where safety is not a primary concern.

Within the setting of multi-agent reinforcement learning, which is integral to
this thesis, we focus on cooperative and mixed-objective problems that require
agents to coordinate their actions. In particular, we do not consider competitive
tasks, such as zero-sum games like chess and Go, in this thesis. These settings
introduce alternative challenges to cooperative tasks that are not discussed in this
thesis. We also do not consider specific aspects of multi-agent coordination, such
as how to learn communication between agents or how to model the behaviour
of other agents in the environment.

Lastly, we emphasise that improved sample efficiency through novel explo-
ration strategies, as proposed in this thesis, does not represent the only approach
to make RL more efficient. Orthogonal to the exploration challenge, RL can be-
come more efficient by improving its generalisation capabilities. If an agent can
be trained once across a suit of tasks and learn a policy that effectively solves all
these tasks, it might require fewer total training samples than training individ-
ual agents for each task. Such generalisation can be achieved through transfer
learning, in which an agent might learn a policy in one or multiple tasks and
then learn to transfer this policy to a new task. Alternatively, generalisation can
be achieved through meta-learning or multi-task learning, in which agents are
directly trained across a distribution of tasks to learn generalisable policies. We
note that these approaches are orthogonal to the exploration challenge in that
they could be combined with novel exploration strategies to further improve the
efficiency of RL.

1.2 Thesis Outline and Contributions

The structure of this thesis and its eight chapters is outlined in Figure 1.1.

1.2. Thesis Outline and Contributions 7

1. Chapter
Introduction

2. Chapter
Background

3. Chapter
Decoupled RL

4. Chapter
MARL Benchmark

5. Chapter
SEAC

6. Chapter
EMAX

7. Chapter
Warehouse Logistics

Part I:
Exploration in Single-Agent
Reinforcement Learning

Part II:
Exploration in Multi-Agent
Reinforcement Learning

Part III:
A Case Study for Multi-Agent
Reinforcement Learning

8. Chapter
Conclusion

Figure 1.1: Outline of the thesis and its structure.

Chapter 2 provides the preliminary background on reinforcement learning,
deep reinforcement learning, and multi-agent reinforcement learning, including
the definitions and formalisms of problem settings as well as common algorithms.
Subsequent chapters will refer to these definitions and further build upon intro-
duced algorithms.

Chapter 3 discusses the challenge of exploration in single-agent reinforcement
learning with a focus on intrinsically motivated exploration. We identify research
questions that arise from the challenge of balancing intrinsically motivated ex-
ploration and exploitation, and propose a novel algorithm that decouples these

8 Chapter 1. Introduction

challenges by learning separate policies for exploration and exploitation. We
show that our approach of decoupled reinforcement learning (DeRL) can lead
to improved sample efficiency and robustness to varying hyperparameters that
determine the balancing of intrinsic and extrinsic rewards.

In Chapter 4, we transition to the multi-agent setting and present a com-
prehensive empirical evaluation of nine MARL algorithms across 25 cooperative
tasks. Following the analysis of this benchmark, we identify remaining challenges
salient in deep MARL to efficiently train agents to cooperate in tasks where
informative feedback is sparse.

Motivated by this identified challenge, Chapter 5 introduces the novel shared
experience actor-critic (SEAC) algorithm for exploration in MARL. SEAC lever-
ages the fact that many multi-agent environments require agents to learn similar
but not identical behaviour and proposes to share experiences across agents. The
chapter describes the algorithm and studies its efficacy in a variety of cooperative
and mixed cooperative-competitive tasks.

Chapter 6 introduces the novel framework of ensemble value functions for
multi-agent exploration (EMAX) to extend existing value-based algorithms for
multi-agent tasks. The approach proposes a novel exploration strategy that iden-
tifies and leads exploration towards states and actions with the potential for
cooperation, and computes more robust target values that stabilise training. The
chapter describes the approach, evaluates the novel framework as an extension
of three commonly-used MARL algorithms, and demonstrates the resulting im-
provements in both sample efficiency and stability of training.

Chapter 7 discusses the problem of warehouse logistics and how MARL can
be used to efficiently train decision-making agents to coordinate in such a setting.
The chapter is the result of an industry internship and ongoing research collabo-
ration with Dematic GmbH, a global company focusing on warehouse automation
and robotics. We formalise two settings of warehouse logistics problems, introduce
simulated environments for both settings, and propose a hierarchical decomposi-
tion and masking of ineffective actions to improve the efficiency of training. The
proposed approach is evaluated in both simulated settings and demonstrates im-
proved sample efficiency and scalability to larger warehouse instances compared
to industry-standard heuristics and standard MARL baselines.

Finally, Chapter 8 concludes the thesis by summarising the contributions and
discussing potential future research directions.

1.3. Publications 9

1.3 Publications

Parts of this thesis have been published in several publications which are the
result of collaborative research projects. Below, we list all publications which are
included in this thesis as well as clearly state the individual contributions of the
author (Lukas Schäfer):

• Chapter 3: Lukas Schäfer, Filippos Christianos, Josiah P. Hanna, and Ste-
fano V. Albrecht. “Decoupled reinforcement learning to stabilise intrinsically-
motivated exploration.” In Proceedings of the 21st International Conference
on Autonomous Agents and Multiagent Systems. 2020.
Available at arXiv 2107.08966
Contributions: I led the research project including identifying the chal-
lenges of intrinsically motivated exploration, ideation and development of
the DeRL algorithm, implementation of the algorithm and experiments,
and the writing of the paper. The fellow co-authors contributed to the
discussion of the project, and the writing of the paper.

• Chapter 4: Georgios Papoudakis, Filippos Christianos, Lukas Schäfer,
and Stefano V. Albrecht. “Benchmarking multi-agent deep reinforcement
learning algorithms in cooperative tasks.” In Advances in Neural Informa-
tion Processing Systems, Track on Datasets and Benchmarks. 2021.
Available at arXiv 2006.07869
Contributions: I contributed to the design of the benchmark, including the
selection of algorithms, environments, and evaluation metrics. The joint
leading co-authors Papoudakis and Christianos led the implementation of
algorithms and the experiments. Analysis of the results and writing of the
paper was a joint effort shared across all authors.

• Chapter 5: Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht.
“Shared experience actor-critic for multi-agent reinforcement learning.” In
Advances in Neural Information Processing Systems. 2020.
Available at arXiv 2006.07169
Contributions: I contributed to the formal derivation of the loss function
of the algorithm (which has been generalised as part of this thesis), led the
implementation and experimentation of the complementary SEDQN algo-
rithm, and contributed to the writing and analysis of the paper. Christianos

https://arxiv.org/abs/2107.08966
https://arxiv.org/abs/2006.07869
https://arxiv.org/abs/2006.07169

10 Chapter 1. Introduction

led the research project, including the ideation of the SEAC algorithm as
well as its implementation and experiments.

• Chapter 6: Lukas Schäfer, Oliver Slumbers, Stephen McAleer, Yali Du,
Stefano V. Albrecht, and David Mguni. “Ensemble value functions for ef-
ficient exploration in multi-agent reinforcement learning.” In Adaptive and
Learning Agents Workshop at the AAMAS conference. 2023.
Available at arXiv 2302.03439
Contributions: I led the research project through ideation, development of
the EMAX algorithm, implementation, conducting experiments, and the
writing of the paper. Slumbers contributed by assisting in running exper-
iments. All co-authors contributed to the discussion of the project, and
providing feedback on the writing. This work has partially been conducted
during an internship at Huawei Noah’s Ark Lab.

• Chapter 7: Aleksandar Krnjaic, Raul D. Steleac, Jonathan D. Thomas,
Georgios Papoudakis, Lukas Schäfer, Andrew Wing Keung To, Kuan-Ho
Lao, Murat Cubuktepe, Matthew Haley, Peter Börsting, Stefano V. Al-
brecht “Scalable multi-agent reinforcement learning for warehouse logistics
with robotic and human co-workers.” In Proceedings of the 2024 IEEE/RSJ
International Conference on Intelligent Robots and Systems. 2024.
Available at arXiv 2212.11498
Contributions: I co-led the implementation of the Dematic Person-to-Goods
(PTG) simulator as well as the foundational codebase with MARL baselines
(IA2C, SNAC, SEAC) together with Krnjaic. I also contributed to the writ-
ing of the paper and the formalisation of the problem setting. This work
has been conducted during an internship and ongoing collaboration with
Dematic GmbH.

Not all research conducted over the past four years fits into the scope of this
thesis. Further publications to which I have contributed include:

• Stefano V. Albrecht, Filippos Christianos, and Lukas Schäfer. "Multi-
agent reinforcement learning: Foundations and modern approaches." In
MIT Press. Cambridge, MA, USA. 2024.
Available at marl-book.com

https://arxiv.org/abs/2302.03439
https://arxiv.org/abs/2212.11498
https://www.marl-book.com/

1.3. Publications 11

• Trevor McInroe, Lukas Schäfer, and Stefano V. Albrecht. "Multi-Horizon
Representations with Hierarchical Forward Models for Reinforcement Learn-
ing." In Transactions on Machine Learning Research. 2023.
Available at arXiv 2206.11396

• Rujie Zhong, Duohan Zhang, Lukas Schäfer, Stefano V. Albrecht, and
Josiah P. Hanna. "Robust on-policy sampling for data-efficient policy eval-
uation in reinforcement learning." In Advances in Neural Information Pro-
cessing Systems. 2022.
Available at arXiv 2111.14552

• Lukas Schäfer. "Task generalisation in multi-agent reinforcement learn-
ing." In Proceedings of the 21st International Conference on Autonomous
Agents and Multiagent Systems. 2022.
Available at ACM Digital Library

• Lukas Schäfer, Filippos Christianos, Amos Storkey, and Stefano V. Al-
brecht. "Learning task embeddings for teamwork adaptation in multi-agent
reinforcement learning." In Workshop on Generalization in Planning at the
NeurIPS conference. 2023.
Available at arXiv 2207.02249

• Alain Andres, Lukas Schäfer, Esther Villar-Rodriguez, Stefano V. Al-
brecht, and Javier Del Ser. "Using Offline Data to Speed-up Reinforcement
Learning in Procedurally Generated Environments." In Adaptive and Learn-
ing Agents Workshop at the AAMAS conference. 2023.
Available at arXiv 2304.09825

• Lukas Schäfer, Logan Jones, Anssi Kanervisto, Yuhan Cao, Tabish Rashid,
Raluca Georgescu, David Bignell, Siddhartha Sen, Andrea Treviño Gavito,
and Sam Devlin. "Visual Encoders for Data-Efficient Imitation Learning in
Modern Video Games." In arXiv preprint. 2023.
Available at arXiv 2312.02312

https://arxiv.org/abs/2206.11396
https://arxiv.org/abs/2111.14552
https://dl.acm.org/doi/abs/10.5555/3535850.3536132
https://arxiv.org/abs/2207.02249
https://arxiv.org/abs/2304.09825
https://arxiv.org/abs/2312.02312

Chapter 2

Problem Settings and Preliminary
Algorithms

In this chapter, we introduce necessary formalisms to define sequential decision-
making problems before introducing the paradigm of reinforcement learning with
common algorithms to solve such problems. Subsequent chapters will build on
these algorithms to define novel algorithms for decision-making problems defined
under the introduced formalisms.

2.1 Markov Decision Processes

The most foundational formalism for sequential decision-making problems is a
Markov decision process (MDP) (Bellman, 1957; Howard, 1964). A MDP is de-
fined as a tuple (S,A, T ,R, µ, ST , γ). S and A denote the sets of states and
actions, respectively, and T : S × A 7→ ∆(S) represents the transition function
defining a probability distribution over the next state given current state and
applied action. A scalar reward is given at any transition following the reward
function R : S × A × S 7→ R. µ defines a distribution over initial states, and
ST ⊂ S defines a set of terminal states.

Under this formalism, a decision-making agent sequentially interacts with the
environment which is initialised in a random state s0 ∼ µ. At each time step t,
the agent observes the current state st ∈ S and selects an action at ∈ A sampled
from its policy π. The policy defines a probability distribution over the action
space conditioned on a state, i.e. π : S 7→ ∆(A). After applying the action at,
the environment transitions to a next state st+1 ∈ S sampled from the transition

13

14 Chapter 2. Problem Settings and Preliminary Algorithms

function T (st+1 | st, at), and the agent receives a reward rt = R(st, at, st+1). This
sequential interaction terminates when the environment reaches a terminal state
st ∈ ST , or after a fixed number of time steps. In the following, we denote the
terminal time step as T and refer to a single interaction loop from initial state
to terminal state as an episode. The objective of the decision-making agent is to
learn a policy π that maximises the expected discounted returns

Eπ

[
Gt
]

= Es0∼µ,at∼π(st)

[∞∑
t=0

γtR(st, at, st+1)
]

(2.1)

with discount factor γ ∈ [0, 1). We note that episodes can continue indefinitely
but in this thesis, we focus on episodic tasks with a finite number of time steps T
per episode. In this episodic setting, the discount factor γ can be omitted since
the returns are guaranteed to be finite but we will keep it for generality.

2.2 Partially Observable Markov Decision Processes

In some environments, it might not be realistic for the agent to have full informa-
tion about the state of the environment. These environments can be formulated
as a partially observable Markov decision process (POMDP) (Kaelbling et al.,
1998) which builds on the MDP formalism. A POMDP is defined as a tuple
(S,O,A, T ,O,R, µ, ST , γ). S, A, T , R, µ, ST , and γ are defined identically to
MDPs. Additionally, a POMDP defines the observation space O as the set of all
possible observations an agent might receive. O : S×A×∆(O) is the observation
probability function that maps states and actions to a probability distribution of
next observations.

At every time step t, the agent receives an observation ot ∈ O and decides
on an action at to apply. The policy of an agent is now conditioned on the
episodic observation history ht ∈ H, i.e. all observations within the current
episode ht = (o0, o1, . . . , ot), instead of the full environment state. Given the
action, the POMDP transitions into a next state st+1 ∈ S sampled according to
T (st+1 | st, at), the next observation ot+1 ∈ O is sampled from O(ot+1 | st, at),
and the agent receives a reward rt = R(st, at, st+1). Identical to MDPs, the ob-
jective in a POMDP is to learn a policy that maximises the expected discounted
returns defined for partially observable environments:

Eπ

[
Gt
]

= Es0∼µ,at∼π(ht)

[∞∑
t=0

γtR(st, at, st+1)
]

(2.2)

2.3. Single-Agent Reinforcement Learning 15

Agent

Environment
action modifies environment state

 action
 observation

& reward

Figure 2.1: Illustration of the interaction loop for single-agent decision-making prob-
lems. The agent repeatedly receives observations at each time step and selects actions
a to interact with the environment which then transitions into a new state and pro-
vides the agent with a reward. From Albrecht et al. (2024).

The interaction loop for such single-agent decision-making problems is illus-
trated in Figure 2.1.

2.3 Single-Agent Reinforcement Learning

Reinforcement learning (RL) is a general framework of machine learning that aims
to learn policies to solve decision-making problems. In this section, we introduce
building blocks and common RL algorithms that learn policies to solve MDPs
and POMDPs. For generality, we follow the notation for POMDPs and condition
policies on the history of observations ht but note that the same algorithms can
be applied to MDPs by conditioning policies on the state st. For a comprehensive
introduction to RL, we refer to Sutton and Barto (2018) and Albrecht et al. (2024)
for deep RL.

2.3.1 Value Functions

Value functions are essential components of RL algorithms. Formally, a value
function estimates the expected returns as defined in Equation 2.2. We note that
the expectation of expected returns depends on the policy π that is used to select
actions. We denote value functions with their underlying policy as a superscript.
A state-value function that estimates the expected returns of following policy π

from state s is denoted with V π(s). For partially observable environments, the

16 Chapter 2. Problem Settings and Preliminary Algorithms

value function is conditioned on the history of observations ht:

V π(ht) = Eat∼π(ht)
[
Gt
]

(2.3)

= Eat∼π(ht),st+1∼T (st,at)

[∞∑
t=0

γtR(st, at, st+1)
]

(2.4)

Similarly, we can define an action-value function Qπ(s, a) that estimates the
expected returns of following policy π from state s after taking action a. For
partially observable environments, the action-value function is conditioned on
the history of observations ht instead of the state and can be defined as follows:

Qπ(ht, at) = E
[
Gt
]

(2.5)

= Est+1∼T (st,at)

[∞∑
t=0

γtR(st, at, st+1)
]

(2.6)

In the following, we will often use the notation V (ht) and Q(ht, at) to refer to
the value functions without explicitly denoting the conditioned policy when the
policy is clear from the context.

Based on these definitions of state-value and action-value functions, we can
define the optimal value functions V ∗(ht) and Q∗(ht, at) which estimate the ex-
pected returns of following the optimal policy π∗ from state s or after taking
action a. The optimal value functions are defined as:

V ∗(ht) = max
π

V π(ht) (2.7)

Q∗(ht, at) = max
π

Qπ(ht, at) (2.8)

Following the Bellman equations from dynamic programming (Bellman, 1966),
we can define rules that allow iterative updates of value functions. This process is
the foundation of many RL algorithms since it allows to iteratively improve and
learn value functions that converge to the true value functions as defined above
under certain conditions (e.g., Melo, 2001).

2.3.2 Q-Learning and Deep Q-Networks

Q-learning (Watkins and Dayan, 1992) is one of the most commonly built upon RL
algorithms. Q-learning directly learns the optimal action-value function Q∗(h, a)
to estimate the expected returns under the optimal policy with observation history
h after taking action a. The algorithm starts with randomly or zero-initialised

2.3. Single-Agent Reinforcement Learning 17

value estimates for all history-action pairs and then iteratively updates the action-
value function:

Q(ht, at)← Q(ht, at) + α
(
rt + γmax

a∈A
Q(ht+1, a)−Q(ht, at)

)
(2.9)

where α > 0 is the learning rate that determines the magnitude of each update and
represents a trade-off. For larger values of α, value estimates might get closer to
convergence with fewer updates, but convergence might be less stable. In contrast,
for small values of α convergence becomes more stable but might require more
updates. The iterative update rule is based on the Bellman optimality equation
for action-value functions and converges under certain conditions to the optimal
action-value function Q∗(h, a) (Melo, 2001). Based on the learned action-value
function, the agent can derive the policy by selecting the action with the highest
value estimate for the current observation history, i.e. π(ht) = arg maxa Q(ht, a).
For simplicity, we slightly abuse notation here by defining a deterministic policy
based on the action-value function instead of defining the policy as a probability
distribution over actions. To encourage exploration and ensure that many state-
action pairs are visited, Q-learning typically uses an ϵ-greedy policy to interact
with the environment to collect experiences, i.e. with probability ϵ the agent
selects an action uniformly at random and with probability 1−ϵ the greedy action
with highest action-value estimate is followed. Since the learned policy and the
policy that is used to collect experiences are different, Q-learning is considered a
off-policy algorithm.

The Q-learning algorithm represents the learned action-value function as a
large table with states or observation histories representing the rows and actions
representing the columns. Each cell within the table then contains the estimated
value for the particular state-action pair. We refer to RL algorithms with such
tabular value functions as tabular RL algorithms. Tabular RL algorithms come
with convergence guarantees (under certain conditions) but are limited in their
ability to solve complex problems with large state or action spaces. One challenge
of a tabular representation of the value function is its linear growth with the
state and action space, so it becomes infeasible to store such a table for complex
problems. Furthermore, tabular value functions update each value estimate in
isolation. After encountering a state and action, the value estimate for this exact
state-action pair is updated and no other value is changed. This can be helpful
for formal guarantees but also implies that every possible state and action needs

18 Chapter 2. Problem Settings and Preliminary Algorithms

to be visited multiple times to learn accurate value estimates which is infeasible
in most problems.

To overcome these limitations, it is desirable to learn value functions using
general techniques of function approximation. Most recently, neural networks
and the field of deep learning (Rosenblatt, 1958; Fukushima, 1980; Rumelhart
et al., 1986; Goodfellow et al., 2016) emerged as particularly effective and general-
purpose function approximators. Deep Q-networks (DQN) (Mnih et al., 2015) is
an approach that extends the tabular Q-learning algorithm with deep neural net-
works to represent an approximate value function. DQN represents the learned
action-value function with a neural network that receives the state or observation
history h as input and outputs the estimated value for each possible action. Due
to the dependence on a finite action space, the tabular Q-learning algorithm and
DQN are designed for discrete (finite) action spaces and are not applicable to
continuous action spaces (without modifications). We denote the learned param-
eters of the value function with θ. To optimise the value function parameters θ,
we minimise the following loss:

L(θ) = E(ht,at,rt,ht+1)∼D

[(
rt + γmax

a∈A
Q(ht+1, a; θ)−Q(ht, at; θ)

)2
]

(2.10)

with θ denoting the parameters of a target network. The target network is of iden-
tical structure to the main value function network and is periodically updated by
copying the parameters θ of the main value function. The loss is derived from
the temporal difference error of the Q-learning update rule. The target network
is used to stabilise training by providing a fixed target value for the temporal dif-
ference error for a period of time, thereby reducing the moving target problem of
RL. Besides the neural network value function and target network, the DQN algo-
rithm extends Q-learning by using a replay buffer of experiences D (Lin, 1992b).
This buffer stores tuples of experiences (ht, at, rt, ht+1) collected by interacting
with the environment using an ϵ-greedy policy. For each update, the expected
loss in Equation 2.10 is approximated by sampling a batch of experiences from
the replay buffer and computing the mean loss over the batch. The parameters θ
are then updated by minimising the loss using gradient descent. In practice, any
gradient-based optimisation algorithm can be used to update the parameters θ
to minimise the given loss. Most commonly, the Adam optimiser (Kingma and
Ba, 2015) is used.

We note that the original DQN algorithm was proposed for fully observable

2.3. Single-Agent Reinforcement Learning 19

environments. To extend DQN to POMDPs, the observation history h is used as
input to the neural network instead of the state s. To condition the value function
on the observation history in an efficient manner, Hausknecht and Stone (2015)
propose to use recurrent neural networks (RNNs) (Rumelhart et al., 1986) to pro-
cess the observation history. RNNs are a class of neural networks that can sequen-
tially process sequences of inputs by maintaining an internal state of the previous
sequence. Commonly used architectures of RNNs include gated recurrent units
(GRU) (Cho et al., 2014) and long short-term memory cells (LSTM) (Hochreiter
and Schmidhuber, 1997).

Further extensions of the DQN algorithm have been proposed to improve the
learning stability and sample efficiency of the algorithm. Double DQN (DDQN) (van
Hasselt et al., 2016) observes that the computation of DQN target values as the
maximum action-value estimate in the next state leads to overestimation bias. To
reduce the overestimation of target values, DDQN identifies the greedy action in
the next state using the main value function and then computes the target value
for this action with the target network. For discussion on further extensions,
we refer to the Rainbow algorithm (Hessel et al., 2018) which combines several
extensions of DQN.

2.3.3 Policy Gradient Algorithms

We refer to Q-learning and similar derived algorithms as value-based RL algo-
rithms since they learn value functions to estimate the expected returns and de-
rive their policy from the value function. In contrast, policy gradient algorithms
directly learn a policy π with parameters ϕ that is optimised to maximise the
expected returns.

Most policy gradient algorithms derive their optimisation objectives from the
policy gradient theorem (Sutton and Barto, 2018) which formulates an expres-
sion for the gradient of the expected returns under a policy with respect to the
parameters of the policy:

∇ϕJ(ϕ) = Es0∼µ,at∼π(ht;ϕ)
[
Gt∇ϕ log π(at | ht;ϕ)

]
(2.11)

By iteratively following this gradient, the parameters of the policy ϕ can be op-
timised such that the policy maximises the expected returns. This theorem is
applicable to any parameterised and differentiable policy. All following policy

20 Chapter 2. Problem Settings and Preliminary Algorithms

gradient algorithms derive their optimisation objectives from this theorem by ap-
proximating the expectation with samples from the environment and policy, and
by approximating the expected returns in various ways. We note that, in contrast
to the previously introduced Q-learning algorithm, all policy gradient algorithms
derived by this theorem are on-policy algorithms. This means that the policy
that is used to collect experiences is the same policy that is optimised during
training, and is required since the expectation of the policy gradient theorem
Equation 2.11 is conditioned on the experiences being collected by the optimised
policy π.

The REINFORCE algorithm (Williams, 1992) instantiates the policy gradi-
ent by computing Monte Carlo estimates of the returns. This approach is simple
but has high variance in the gradient estimates due to each trajectory resulting
from the stochasticity of the initial state distribution, policy, and transition func-
tion. To reduce variance of gradient estimates, actor-critic algorithms estimate
expected returns by using a parameterised value function V (h; θ) with parameters
θ. The value function of actor-critic algorithms is often referred to as the critic,
and the policy is denoted as the actor. A commonly used actor-critic algorithm
is the advantage actor-critic (A2C) algorithm (Mnih et al., 2016). A2C uses the
advantage estimate

A(ht, at) = Q(ht, at)− V (ht) (2.12)

= rt + γV (ht+1)− V (ht) (2.13)

to obtain action-conditioned value estimates with lower variance. To optimise
the policy parameters ϕ and the value function parameters θ, A2C minimises the
following loss functions for the policy:

L(ϕ) = Es0∼µ,at∼π(ht;ϕ)
[
− log π(at | ht;ϕ)

(
rt + γV (ht+1; θ)− V (ht; θ)

)]
(2.14)

and the value function:

L(θ) = Es0∼µ,at∼π(ht;ϕ)

[(
rt + γV (ht+1; θ)− V (ht; θ)

)2
]

(2.15)

Both V and π are neural networks with parameters θ and ϕ, respectively, and
are optimised by iteratively minimising the loss functions above. In practise,
training can be further stabilised by sampling multiple trajectories in parallel to
obtain batches of experiences to average over, computing n-step return estimates
instead of 1-step returns (as defined above), and by using entropy regularisation

2.4. Partially Observable Stochastic Games 21

to encourage exploration (Mnih et al., 2016). For entropy regularisation, the
policy loss is extended with a term of the policy entropy:

H(π(at | ht;ϕ)) = −Eat∼π(ht;ϕ)
[
log π(at | ht;ϕ)

]
(2.16)

with a hyperparameter to control the weight of the entropy term in the loss
function. The entropy term encourages the policy to explore and deincentivises
early convergence to suboptimal policies.

Proximal policy optimisation (PPO) (Schulman et al., 2017) extends the A2C
algorithm to further improve the stability and sample efficiency. The algorithm
is based on the idea of trust region policy optimisation (Schulman et al., 2015)
that constrains the policy update to prevent the policy from diverging too far
from the current policy. PPO achieves this constraint by clipping the policy loss
in Equation 2.14 to a region around the current policy with importance sampling
weights. The clipped policy loss is defined as:

L(ϕ) = Es0∼µ,at∼π(ht;ϕ)

−min

 ρ(ht, at)A(ht, at; θ),
clip (ρ(ht, at), 1− ϵ, 1 + ϵ)A(ht, at; θ)

(2.17)

with ϵ being a hyperparameter to control the size of the trust region, A(ht, at; θ)
being the advantage estimate computed from a state value function (Equation 2.12),
and ρ denoting the importance sampling (IS) weights:

ρ(h, a) = π(a | h;ϕ)
πβ(a | h)

(2.18)

given by the ratio of the current policy and the policy that was used to collect
experiences, denoted with πβ.

The clipped policy loss ensures that the policy update does not deviate too
far from the current policy and that experience is re-weighted to be on-policy
using importance sampling weights. PPO further extends the algorithm by using
multiple epochs of policy updates on the same batch of experiences to improve
sample efficiency. The critic in PPO is trained using the same loss as in A2C
(Equation 2.15).

2.4 Partially Observable Stochastic Games

So far in this chapter, we have introduced formalisms for single-agent decision-
making problems under the MDP and POMDP formalisms and have seen common

22 Chapter 2. Problem Settings and Preliminary Algorithms

RL algorithms to solve these problems. In the following, we extend these for-
malisms to multi-agent decision-making problems before introducing multi-agent
reinforcement learning algorithms to solve these problems.

Stochastic games (Shapley, 1953), also known as Markov games (e.g. (Littman,
1994)), are extensions of the formalism of MDPs for multi-agent problems. In
particular, we consider partially observable stochastic games (POSG) (Hansen
et al., 2004) for N agents as an extension of POMDPs. A POSG is given by
the tuple (I, S,O,A, T ,O, {Ri}i∈I , µ, ST , γ). Agents are indexed by i ∈ I =
{1, . . . , N}. S denotes the state space of the environment and A = A1× . . .×AN

denotes the joint action space of all agents. Each agent has access to its local
observations oi ∈ Oi. The joint observation space is denoted O = Oi × . . .×ON .
T : S × A 7→ ∆(S) denotes the transition function of the environment and
defines a distribution of successor states given the current state and the applied
joint action. The observation transition function O : S × A × ∆(O) defines a
distribution of next joint observations received by agents given the current state
and joint action of all agents. Ri : S ×A× S 7→ R denotes the reward function
for each agent i, and similar to previous formalisms µ defines a distribution over
initial states, ST ⊂ S defines a set of terminal states, and γ ∈ [0, 1) denotes the
discount factor.

Each agent learns a policy πi(at
i | ht

i) conditioned on its history of observations
until time step t. Note that the history of agent i until time step t only includes
the observations of agent i, i.e. ht

i = (o0
i , o

1
i , . . . , o

t
i). The objective of a POSG

is for all agents to learn a joint policy π = (π1, . . . , πN) such that the expected
discounted returns of each agent are maximised with respect to the policies of all
other agents. The discounted returns for agent i can be written as

Eπ

[
Gt

i

]
= Es0∼µ,at

i∼πi(ht
i),a−i∼π−i(ht

−i)

[∞∑
t=0

γtRi(st, at, st+1)
]

(2.19)

where γ ∈ [0; 1) denotes the discount factor, at = (at
1, . . . , a

t
N) denotes the joint

action, and subscript −i denotes all agents but agent i, i.e. π−i = π \ {πi} and
a−i = (a1, . . . , ai−1, ai+1, . . . , aN). Formally, the objective is to learn a joint policy
π that satisfies the following condition:

∀i : πi ∈ arg max
π′

i

Eat
i∼π′

i(h
t
i),at

−i∼π−i(ht
−i)[Gi] (2.20)

The interaction loop for multi-agent decision-making problems modelled as a
POSG is illustrated in Figure 2.2.

2.5. Decentralised Partially Observable Markov Decision Processes 23

Agent 1

Agent 2

Agent n

Environment
joint action modifies environment state

 action

 action

 action

joint action

observation
& reward

observation
& reward

observation
& reward

Figure 2.2: Illustration of the interaction loop for multi-agent decision-making prob-
lems. The agents repeatedly receives observations at each time step and selects
actions a to interact with the environment. Based on the joint action a, the envi-
ronment transitions into a new state and provides each agent with a reward. From
Albrecht et al. (2024).

2.5 Decentralised Partially Observable Markov De-
cision Processes

Stochastic games allow different agents to optimise for different objectives, given
by their reward functions. In the special case of common reward tasks, all agents
optimise for the same reward function, i.e. ∀i, j ∈ I : Ri = Rj. Environments
that fulfil this property are also commonly referred to as fully cooperative and
can be defined under the formalism of decentralised partially observable Markov
decision processed (Dec-POMDP) (Bernstein et al., 2002; Oliehoek and Amato,
2016). A Dec-POMDP can be formalised almost identical to a POSG with the
only difference being that it only has a single common reward function denoted
with R without any subscript.

2.6 Multi-Agent Reinforcement Learning

Multi-agent reinforcement learning (MARL) is concerned with learning policies
in multi-agent systems. In such systems, as formalised by a POSG defined above,
multiple agents concurrently learn policies for sequential decision making within
the environment. In this section, we will provide the necessary background for

24 Chapter 2. Problem Settings and Preliminary Algorithms

the following chapters. For a comprehensive introduction to MARL, we refer to
Albrecht et al. (2024).

One concept that underlies most MARL algorithms and all algorithms that
will be discussed in this thesis is decentralised execution. Under this paradigm
we assume that all agents need to be able to execute their policies, i.e. to select
actions, in a decentralised manner. This is particularly important in partially
observable environments where each agent may only condition their policy on the
history of their observations and may not assume access to the observations or
actions of other agents or the full state of the environment. In contrast to single-
agent RL where we only learn a single policy, this has the major distinction that
different agents might receive different inputs and observe different information
about the environment. MARL can be seen as a decomposition of the large
joint action space into smaller individual action spaces across multiple learning
agents. This allows MARL to learn in tasks where the joint action space is too
large for single-agent RL techniques, which quickly become infeasible. Imagine
a warehouse in which 12 robotic workers have to be controlled. Each of these
robots chooses one of 6 actions at each time step. Applying single-agent RL
to this problem over the joint action space of all workers would have to reason
over 612 = 2, 176, 782, 336 actions which is infeasible. In contrast in MARL with
decentralised execution, each agent can learn a policy to control a single robotic
worker and only needs to take decisions about the comparably small action space
with just 6 actions for that particular worker.

Similar to observations, histories and actions of agents, we will denote poli-
cies and value functions with a subscript for the agent index to distinguish the
functions of individual agents in MARL. For example, the policy, state-value and
action-value functions of agent i will be denoted as πi, Vi and Qi, respectively. In
the following, we will sometimes omit the subscript for the agent index for policies
and value functions when the parameterisation of the functions already indicates
the corresponding agent. For example, we will write π(hi;ϕi) and V (hi; θi) to
denote the policy and state-value function of agent i with parameters ϕi and θi,
respectively, without denoting the subscript of the function directly.

In the following, we introduce several commonly used MARL algorithms
across three categories: independent learning, value decomposition, and multi-
agent actor-critic algorithms with centralised critics. Table 2.1 provides an overview
of the algorithms that will be introduced and lists several of their properties. We

2.6. Multi-Agent Reinforcement Learning 25

Table 2.1: Overview of MARL algorithms and their properties spanning over three cat-
egories: independent learning (IL), multi-agent actor-critic algorithms with centralised
critics (MAAC), and value decomposition algorithms (VD) under the centralised train-
ing decentralised execution (CTDE) paradigm.

Category Centralised training Off-/On-policy Policy gradient

IDQN IL 7 Off 7

IA2C IL 7 On 3

IPPO IL 7 On 3

MADDPG MAAC 3 Off 3

COMA MAAC 3 On 3

MAA2C MAAC 3 On 3

MAPPO MAAC 3 On 3

VDN VD 3 Off 7

QMIX VD 3 Off 7

note that the table is not exhaustive and only provides a selection of common
algorithms that we will build upon in the following chapters.

2.6.1 Independent Learning

One of the simplest forms of MARL is independent learning (IL) (Tan, 1993). In
this paradigm, each agent is trained independently from other agents using only
its local information. In this way, IL can be considered a reduction of the multi-
agent decision-making problem to multiple single-agent decision-making problems.
Each agent learns a policy to maximise its own expected returns without directly
considering the policies of other agents. However, we note that this does not
mean that IL is unable to learn policies that can coordinate with each other. The
agents are still concurrently acting in the same environment and, therefore, their
experiences depend on the policies of other agents. With enough samples, agents
can learn to react to the policies of other agents and effectively coordinate. One
can consider the IL setup as each agent treating the policies of other agents as
part of the environment, making the transition function of the environment more
complicated, stochastic, and highly non-stationary since the policies of agents
consistently change. This non-stationarity is generally present in MARL but par-

26 Chapter 2. Problem Settings and Preliminary Algorithms

ticularly challenging in IL since agents do not actively consider the constantly
changing policies of other agents unlike in more complicated MARL algorithms
we will see later. Despite its simplicity and challenges, prior work found that IL
can be surprisingly competitive with more complicated MARL approaches (Pa-
poudakis et al., 2021; de Witt et al., 2020).

Generally, any single-agent RL algorithm can be applied independently for
MARL. This immediately gives rise to a large number of possible IL algorithms,
including independent DQN (IDQN), independent A2C (IA2C), and indepen-
dent PPO (IPPO) based on the single-agent algorithms we have introduced in
Section 2.3.

2.6.2 Centralised Training Decentralised Execution

While independent learning treats both training and execution of agents as decen-
tralised processes, centralised training with decentralised execution (CTDE) (e.g.,
Oliehoek et al., 2008; Lowe et al., 2017; Rashid et al., 2020b) is a paradigm that
considers the training of all agents as a centralised process. In CTDE, agents
may be trained with access to the joint observations or actions of all agents as
long as the policies of agents can still be executed in a decentralised manner, i.e.
the policies of agents are only conditioned on local information of the individual
agents. This allows agents to leverage more information during training without
compromising decentralised execution.

Below, we will introduce several deep MARL algorithms under the CTDE
paradigm that we will build upon in the later chapters. The first family of algo-
rithms will build on top of IDQN and value-based RL algorithms (Section 2.3.2).
The second family of algorithms will build on top of policy gradient and actor-
critic algorithms (Section 2.3.3).

2.6.2.1 Value Decomposition

Value-based RL algorithms such as DQN learn an action-value function to esti-
mate the expected returns under the optimal policy and derive a greedy policy
from this value function. In the context of MARL algorithms under the CTDE
paradigm, it might be desirable to learn a value function that is conditioned on
additional information such as the observations or actions of other agents. Such
value functions might benefit training by leveraging more information but would

2.6. Multi-Agent Reinforcement Learning 27

prevent the decentralised execution of policies. Additionally, learning such a value
function can be computationally infeasible due to the exponential growth of the
joint action space with the number of agents. Value decomposition algorithms
try to overcome these limitations by decomposing a centralised value function,
conditioned on the state of the environment and the joint actions of all agents,
into individual utility functions for each agent. These utility functions are only
conditioned on the observation history and individual actions of each agent and
enable decentralised execution. This idea is inspired by the concept of coordi-
nation graphs which represent the interactions of agents in multi-agent systems
as a graph and have a long history in multi-agent systems and MARL research
(e.g., Guestrin et al., 2001, 2002; Kok and Vlassis, 2005; Oliehoek, 2010; Oliehoek
et al., 2012, 2013; van der Pol, 2016; Böhmer et al., 2020).

Due to the assumption of decomposing a single centralised value function
for all agents, value decomposition algorithms assume that the agents optimise
for a common reward function, i.e. the environment can be formalised as a Dec-
POMDP (Section 2.5). The decomposed centralised action-value function in such
a setting is defined as

Q(s, a; θ) = Es0∼µ,at∼π(ht)

[∞∑
t=0

γtR(st, at, st+1)
]

(2.21)

with R denoting the common reward function of all agents. We note that we
never learn such a centralised value function directly but instead train individual
utility functions for each agent that are jointly optimised to approximate the
centralised value function. The utility function of agent i is written as Q(hi, ai; θi)
and is conditioned on the observation history and action of agent i only. Value
decomposition algorithms and the following formalism is closely related to the
notion of collective intelligence (COINs) studied in multi-agent systems. This
literature asks the question how to design agents that can learn to coordinate
towards a global objective without centralised control or communication (Wolpert
and Tumer, 1999), and various utility functions have been proposed to incentivise
agents to coordinate in this setting (Wolpert et al., 2000; Wolpert and Tumer,
2002).

Many recent value decomposition methods define a decomposition that satis-
fies the individual-global-max (IGM) property (Rashid et al., 2020b; Son et al.,
2019). The IGM property ensures that (1) agents choosing their actions by greed-
ily following their individual utility functions leads to joint actions that also max-

28 Chapter 2. Problem Settings and Preliminary Algorithms

imise the decomposed centralised action value function, and (2) the joint action
that maximises the decomposed centralised action value function is composed of
the individual greedy actions with respect to the individual utility functions of
all agents. In this way, the IGM property enables effective training and action
selection of value decomposition methods. The IGM property was first defined by
Son et al. (2019) but previously Rashid et al. (2020b) introduced the term consis-
tency following an almost identical definition. However, the definition found in
this thesis follows Albrecht et al. (2024) who consider the possibility that there
could be multiple greedy actions with respect to value functions.

In the following, we denote the sets of greedy actions with respect to the
decomposed centralised action-value function and the individual utility function
of agent i, respectively, as follows:

A∗(s; θ) = arg max
a∈A

Q(s, a; θ) (2.22)

A∗
i (hi; θi) = arg max

ai∈Ai

Q(hi, ai; θi) (2.23)

with Q(s, a; θ) and Q(hi, ai; θi) denoting the centralised action-value function and
individual utility function of agent i, respectively. The IGM property is satisifed
if and only if the following holds for all states s ∈ S and corresponding individual
histories hi ∈ Hi of agent i:

∀a = (a1, . . . , aN) ∈ A : a ∈ A∗(s, θ) ⇐⇒ ∀i ∈ I : ai ∈ A∗
i (hi; θi) (2.24)

Besides providing a feasible decomposition of the centralised action-value func-
tion, the individual utility functions of agents can also be useful to identify the
contributions of individual agents to the received common rewards. In this way,
value decomposition methods can address the multi-agent credit assignment prob-
lem of common-reward settings in MARL (Du et al., 2019; Rashid et al., 2020b).
The multi-agent credit assignment problem refers to the challenge of attributing
the received common rewards to the actions of individual agents in a multi-agent
system.

Various value decomposition algorithms have been proposed based on the IGM
property. The simplest algorithm is value decomposition networks (VDN) (Sune-
hag et al., 2018) which assumes a linear decomposition of the centralised value
function:

Q(s, a; θ) =
∑
i∈I

Q(hi, ai; θi) (2.25)

2.6. Multi-Agent Reinforcement Learning 29

We refer to Albrecht et al. (2024) for a proof that the VDN decomposition satisfies
the IGM property. VDN jointly optimises the individual utility functions of all
agents by minimising the following loss:

L(θ) = E(ht,at,rt,ht+1)∼D

(rt + γ
∑
i∈I

max
ai∈Ai

Q(ht+1
i , ai; θi)−

∑
i∈I

Q(ht
i, a

t
i; θi)

)2

(2.26)
with θi denoting the parameters of the periodically updated target network of
agent i. Similar to DQN, the loss is optimised from tuples of experiences con-
taining the joint observations and actions of all agents which are stored in and
sampled from an experience replay buffer.

Another algorithm that builds on the idea of value decomposition is QMIX
(Rashid et al., 2020b). QMIX formulates a more expressive decomposition of the
centralised action-value function based on the assumption that the centralised
action-value function should be strictly monotonic with respect to the individual
utility functions of all agents:

∀i ∈ I, ∀a ∈ A : ∂Q(s, a; θ)
∂Q(hi, ai; θi)

> 0 (2.27)

This assumption is a sufficient condition to ensure the IGM property. We refer to
Albrecht et al. (2024) for a proof that the QMIX monotonicity assumption is suf-
ficient to satisfy the IGM property. To implement and ensure this monotonicity
assumption in practise, QMIX learns a monotonic mixing network fmix with pa-
rameters θmix that takes the individual utility estimates as inputs and computes
a monotonic aggregation to obtain an estimate of the centralised action-value
function. The learned decomposition can then be written as follows:

Q(s, a, θ) = fmix (Q(h1, a1; θ1), . . . , Q(hN , aN ; θN); θmix) (2.28)

We note that the mixing function is guaranteed to be strictly monotonic with
respect to the individual utilities as long as the network has only positive weights.
To ensure that the weights of the mixing network are always positive, the pa-
rameters θmix are obtained as the output of a separate hypernetwork fhyper with
parameters θhyper that receives the state of the environment as input and outputs
the parameters of the mixing network. In environments, where the state is not
available during training, we use the joint observation as a proxy for the state.
To ensure positive weights, the absolute value function is used as the activation
function to the outputs corresponding to the weights of the mixing network. The

30 Chapter 2. Problem Settings and Preliminary Algorithms

parameters of the hypernetwork θhyper as well as the parameters of the individual
utility functions {θi}i∈I are jointly optimised by minimising the following loss:

L(θ) = E(ht,st,at,rt,ht+1,st+1)∼D
[(
rt + γytot−

fmix
(
Q(ht

1, a
t
1; θ1), . . . , Q(ht

N , a
t
N ; θN); θmix

))2
]

(2.29)

with target value

ytot = fmix

(
max
a1∈A1

Q(ht+1
1 , a1; θ1), . . . , max

aN ∈AN

Q(ht+1
N , aN ; θN); θmix

)
(2.30)

with θi denoting the parameters of the target utility network of agent i and
θmix denoting the parameters of the target mixing network. All target networks
are updated periodically by copying the parameters of the corresponding main
network. As for VDN, batches of experiences are sampled from an experience
replay buffer to compute the loss in Equation 2.29.

2.6.2.2 Centralised Critics for Actor-Critic Algorithms

In Section 2.3.3 we introduced actor-critic algorithms that simultaneously learn
a policy and value function, also referred to as the actor and critic, respectively.
We note that the critic in these algorithms is only used during training to obtain
estimates for expected returns needed to compute the policy gradients. During
execution for action selection, the critic is not used and we directly query the
parameterised policy to obtain actions. Following this observation, we can ex-
tend actor-critic algorithms for the CTDE paradigm by conditioning the critic
on additional centralised information, such as the joint observations or the state
of the environment. This allows the critic to leverage more information during
training without compromising decentralised execution.

Such centralised critics can be used with any actor-critic algorithm in MARL.
For example, we can extend the previously introduced A2C algorithm with cen-
tralised critics by conditioning the critic of each agent on the joint observation
history of all agents. The loss for the critic of agent i can be written as:

L(θi) = Es0∼µ,at
i∼π(ht

i;ϕi)

[(
rt

i + γV (ht+1; θi)− V (ht; θi)
)2
]

(2.31)

and the corresponding actor loss then becomes:

L(ϕi) = Es0∼µ,at
i∼π(ht

i;ϕi)

[
− log π(at

i | ht
i;ϕi)

(
rt + γV (ht+1; θi)− V (ht; θi)

)]
(2.32)

2.6. Multi-Agent Reinforcement Learning 31

Note that the policy of agent i is still only conditioned on the individual observa-
tion history of agent i, but the critic is conditioned on the observation histories of
all agents. Besides the difference in inputs to the critic, this algorithm is identical
to the independent A2C algorithm. We refer to this algorithm with centralised
critics as multi-agent A2C (MAA2C). Likewise, we can extend the PPO algorithm
with centralised critics to obtain multi-agent PPO (MAPPO). These algorithms
are commonly used in MARL research and have been found to perform well in
many different benchmarks (Papoudakis et al., 2021; Yu et al., 2022).

Counterfactual multi-agent policy gradient (COMA) (Foerster et al., 2018) was
one of the first MARL algorithms to leverage centralised critics and is focused
on the common reward setting. As discussed in Section 2.6.2.1, the multi-agent
credit assignment problem is a major challenge whenever training agents from a
common reward, requiring agents to identify their contributions to the received
common reward signal. To address this challenge, COMA derives an advantage
estimation that computes a counterfactual baseline based on the idea of difference
rewards (Wolpert and Tumer, 2002; Tumer and Agogino, 2007) using a centralised
action-value function:

L(ϕi) = Es0∼µ,at
i∼π(ht

i;ϕi)

[
− log π(at

i | ht
i;ϕi)

(
Q(st, at; θ)

−
∑

a′
i∈Ai

π(a′
i | ht

i;ϕi)Q(st, (a′
i; at

−i); θ)

 (2.33)

with θ denoting the parameters of the centralised action-value function shared
across all agents, at

−i denoting the joint action of all agents except agent i, and
(a′

i; at
−i) denotating the joint action with action a′

i of agent i and actions at
−i

for all other agents. Through its advantage formulation, COMA compares how
much better the applied action at

i of agent i within at was compared to applying
any action sampled from its policy π(· | ht

i;ϕi). In this way, the counterfactual
baseline of COMA allows it to identify the contribution of the action of agent i
to the received common reward. Since all agents optimise for the same common
reward signal, a single centralised action-value function can be shared across all
agents. This critic is trained using the TD-lambda algorithm (Sutton, 1988).

Another algorithm that builds on the idea of centralised critics is multi-agent
deep deterministic policy gradient (MADDPG) (Lowe et al., 2017). This algo-
rithm extends the deep deterministic policy gradient (DDPG) algorithm (Lillicrap
et al., 2016) from single agent RL to the multi-agent setting. The DDPG algo-

32 Chapter 2. Problem Settings and Preliminary Algorithms

rithm was originally designed for continuous control, i.e. agents choose actions
within a continuous range rather than choosing from a discrete set of actions,
since it assumes differentiability of actions with respect to the parameters of the
actor. However, DDPG and MADDPG can and have been applied to environ-
ments with discrete action spaces using the gumbel softmax reparameterisation
trick (Jang et al., 2017; Maddison et al., 2017). Motivated by the problem of con-
tinuous control, MADDPG trains a deterministic policy µi with parameters ϕi for
each agent i which given an observation history outputs a continous action. We
denote deterministic policies with µ and stochastic policies with π. Additionally,
a centralised action-value function is trained for each agent which is conditioned
on the joint observation history and joint actions of all agents. The critic is
optimised to minimise the following mean squared error loss:

L(θi) = E(ht,at,rt
i ,ht+1)∼D

[(
rt

i + γQ(ht+1, at+1; θi)|at+1
i =µi(ht+1

i ;ϕi) −Q(ht, at; θi)
)2
]

(2.34)
with θi denoting the parameters of the periodically updated target critic network
of agent i and ϕi denoting the parameters of the target actor network of agent
i. The actor is trained to maximise the expected returns by minimising the
deterministic policy gradient loss:

L(ϕi) = Eht,at∼D
[
−Q(ht, (µ(ht

i;ϕi); at
−i); θi)

]
(2.35)

We note that, unlike other discussed policy gradient algorithms, DDPG and MAD-
DPG are off-policy algorithms and can learn from experiences sampled from an
experience replay buffer like DQN.

Chapter 3

Decoupled Reinforcement Learning
to Stabilise Intrinsically Motivated

Exploration

Publication
This chapter is based on and adapted from the following publication:

Lukas Schäfer, Filippos Christianos, Josiah P. Hanna, and Stefano V.
Albrecht. “Decoupled reinforcement learning to stabilise intrinsically-
motivated exploration.” In Proceedings of the 21st International Conference
on Autonomous Agents and Multiagent Systems. 2020.

In this chapter, we will discuss the challenge of exploration in the context
of single-agent reinforcement learning, in which a single agent is exploring its
environment to gather information with the aim of learning an optimal policy.
We follow the problem setting of a MDP defined in Section 2.1.

Exploration is one of the essential challenges in reinforcement learning. How-
ever, many RL algorithms still use simple randomised methods, e.g. applying
ϵ-greedy policies (Watkins, 1989) or adding random noise to continuous actions
(Lillicrap et al., 2016), to explore without any consideration for which experiences
are valuable to explore or not. Such random exploration techniques can be insuffi-
cient to solve hard exploration problems that require agents to explore large state
spaces without frequent or even any rewards from the environment. One category
of exploration techniques that has been successfully applied in such sparse-reward

33

34 Chapter 3. Decoupled Reinforcement Learning

settings is intrinsically motivated exploration (Oudeyer and Kaplan, 2008, 2009;
Barto, 2013). For the remainder of this chapter, which focuses on single-agent
RL, we denote the intrinsic rewards of the agent with ri. This should not be
confused with the (extrinsic) rewards of agent i in a multi-agent system!

For intrinsically motivated exploration, the agent itself computes intrinsic re-
wards ri that incentivise the exploration of novel or underexplored parts of the
environment. But how are parts of the state space identified to be “novel” or “un-
derexplored”? Many approaches in this family of algorithms predict transitions
of the environment (e.g., Schmidhuber, 1991; Pathak et al., 2017; Raileanu and
Rocktäschel, 2020; Burda et al., 2019b) or compute (pseudo-)counts of states (e.g.,
Strehl and Littman, 2008; Tang et al., 2017; Ostrovski et al., 2017). If the agent
can accurately predict transitions or has frequently visited states in a part of the
environment then further exploration might not be necessary in this part of the
states space. Likewise, if the agent is unable to predict transitions or has rarely
encountered states in a part of the environment then further exploration of this
part of the environment might be beneficial for learning a policy.

To train a policy with these intrinsic rewards, approaches typically maximise
the expected returns over a combined reward signal of the intrinsic rewards ri

and the extrinsic rewards of the environment re with some weighting factor λ:

r = re + λri (3.1)

This combined objective directly formulates the exploration-exploitation trade-
off in RL. The agent is optimised to maximise the sum of extrinsic rewards re

from the environment, which indicate how well the agent is able to exploit its
current knowledge to solve the task, and the intrinsic rewards ri, which indicate
the agent’s ability to effectively explore the environment. In this context, the
weighting factor λ determines the balance between exploration and exploitation.
A high λ incentivises the agent to put more emphasis on exploration, whereas a
low λ encourages the agent to exploit more.

However, it appears clear that no single policy can be optimal for both ex-
ploration and exploitation in most tasks. A more exploratory policy will likely
aim to encounter a large part if not all parts of the state space while an exploita-
tive policy will likely only need to encounter a small subset of the state space
to optimally solve the task. This indicates a potential conflict between the two
objectives of exploration and exploitation that leads to several challenges with

35

intrinsically motivated exploration techniques:

1. Intrinsic rewards lead to non-stationary rewards. Intrinsic rewards
indicate the need for more exploration and, thus, naturally diminish through-
out training as the agent has already explored larger parts of the environ-
ment. Such decay is intentional and necessary for the agent to eventually
only optimise for extrinsic rewards to solve the task, but renders the com-
bined reward signal to be non-stationary. This violates the Markov assump-
tion and can cause the learning progress to be unstable.

2. Intrinsically motivated exploration is sensitive to the scale λ. As
indicated above, λ is used to balance extrinsic and intrinsic rewards in the
combined reward signal. If λ is too large, the intrinsic rewards might dom-
inate and prevent the agent from learning to solve the task. On the other
hand, we show that small intrinsic rewards have no sufficient impact and do
not incentivise exploration as intended (as we will see later in Figure 3.3).

3. Intrinsically motivated exploration is sensitive to the rate of decay.
While intrinsic rewards naturally decay throughout training, the rate at
which they decay can typically be defined with hyperparameters of the
particular approach. Intrinsically motivated RL can be highly sensitive
to this rate of decay since slowly decaying intrinsic rewards might disrupt
training and prevent agents from learning to solve the task whereas quickly
vanishing intrinsic rewards have insufficient impact on exploration (as we
will see later in Figure 3.4).

These challenges lead to a significant dependency of intrinsic rewards on hy-
perparameters. Additionally, determining these hyperparameters for scale and
rate of decay is specific to a task due to its dependence on the scale of extrin-
sic rewards and required exploration in the respective task. Current approaches
usually address the difficulties caused by sensitivity to hyperparameters using a
large hyperparameter search to find effective parameterisation of a method. How-
ever, such a search can be considered an exploration by itself, and can introduce
bias in reported results that only show the performance of the best-identified
hyperparameters. We argue that this bias is particularly harmful in approaches
focusing on exploration as best-identified hyperparameters may have performed
well in a hard exploration task because they biased the exploration towards par-
ticular parts of the state space that was required to solve the task. However, this

36 Chapter 3. Decoupled Reinforcement Learning

effectively shifts the desirable exploration from the proposed method to the hy-
perparameter search and, thus, the reported best-identified performance results
may not be indicative of the quality of the exploration method. All these proper-
ties make the practical application of such methods difficult (Taïga et al., 2020)
and motivate the need for more robust approaches.

Motivated by these challenges, success in off-policy RL (Zhong et al., 2021;
Fujimoto et al., 2018; Haarnoja et al., 2018; Silver et al., 2014; Degris et al., 2012),
and the observation that several of these challenges arise due to the optimisation
of a single policy for both exploration and exploitation, we propose to decouple
the RL training into two separate policies. We train an exploration policy πβ

with the combined signal of extrinsic and intrinsic rewards. This policy is trained
with the combined reward signal to collect exploratory experiences with a bias
towards experiences that indicate solutions to the task of the environment. Simul-
taneously, we train an exploitation policy πe using only extrinsic rewards on the
data collected by the exploration policy. We refer to this approach as decoupled
reinforcement learning (DeRL)1. Using such decoupling addresses the aforemen-
tioned challenges of intrinsically motivated exploration. The exploration policy
is optimised using the combined objective of extrinsic and intrinsic rewards as in
typical intrinsically motivated RL. This policy is not needed to learn to solve the
task but only serves to generate data for the training of the exploitation policy.
The exploitation policy is only trained with extrinsic rewards and is, thereby, de-
coupled from the challenges of training with intrinsic rewards and optimised to be
an effective policy in the given environment. Our experiments show that DeRL
leverages the benefits of intrinsically motivated exploration while stabilising its
inherent sensitivity to scale and rate of decay of intrinsic rewards.

We implement and evaluate two versions of DeRL built upon on-policy actor-
critic and off-policy Q-learning with five types of intrinsic rewards in two learning
environments that focus on exploration. We analyse the sensitivity of DeRL and
RL baselines to the scale and the rate of decay of intrinsic rewards to verify the
general dependency of these methods on the hyperparameters of intrinsic rewards
and show that DeRL is more robust to varying hyperparameters. Additionally,
the exploitation policy of several DeRL algorithms is able to converge to higher
evaluation returns using up to ∼40% fewer interactions and reaches higher returns

1We provide an implementation of DeRL and the Hallway environment at https://github.
com/uoe-agents/derl

https://github.com/uoe-agents/derl
https://github.com/uoe-agents/derl

3.1. Intrinsically Motivated Exploration 37

in some tasks compared to intrinsically motivated RL baselines. Such improved
robustness and sample efficiency can justify the additional cost of training a
second policy. However, we also observe that DeRL still suffers from variability
in the off-policy optimisation of the exploitation policy πe in several tasks. We
hypothesise that distribution shift caused by the divergence of πe and πβ leads to
these instabilities, and show that regularisers can be applied to restrict divergence
of both policies (Wu et al., 2019) and effectively reduce deviations in returns of
exploration and exploitation policies.

3.1 Intrinsically Motivated Exploration

A plethora of approaches have been proposed to replicate the concept of curiosity
for exploration in RL. Oudeyer and Kaplan (2008), Oudeyer and Kaplan (2009),
and Barto (2013) provide an overview over multiple such approaches for efficient
exploration in RL and robotics. The underlying idea behind these approaches
is fairly simple: agents should be incentivised to explore novel or poorly under-
stood parts of the environment. Therefore, an agent learns an intrinsic reward
function which incentivises the agent to explore. During training, the agent op-
timises the combined reward signal of extrinsic rewards of the environment and
intrinsic rewards. Over time, the agent should become less “curious” with com-
pleted exploration and exploitation will gradually take over. These exploration
bonuses are a form of reward shaping, trying to compute additional rewards to
facilitate training (Devlin and Kudenko, 2012). There are two major categories
of intrinsic rewards for exploration: (1) count-based intrinsic rewards and (2)
prediction-based intrinsic rewards. Below, we will introduce several commonly
used representatives of both of these categories.

3.1.1 Count-based Intrinsic Rewards

Count-based intrinsic rewards count occurrences of states or state-action pairs.
Using these counts, agents can then compute an intrinsic reward that is inverse
proportional to the count of state visitations denoted with N(st):

rt
i = 1√

N(st)
(3.2)

Thereby, agents are incentivised to visit states within the environment that

38 Chapter 3. Decoupled Reinforcement Learning

have previously been less frequently encountered. Likewise, agents are discour-
aged from visiting frequently encountered states that are deemed less valuable for
exploration. While this approach is easily applicable in small and discrete state
spaces, pseudo-counts have to be computed for large or continuous state spaces
where encountering any state multiple times is rare. Previous work compute
pseudo-counts using density models that predict visitations of states (Bellemare
et al., 2016; Ostrovski et al., 2017) or locality-sensitive (Andoni and Indyk, 2008)
hash functions (Tang et al., 2017) like the SimHash (Charikar, 2002) function.

3.1.2 Prediction-based Intrinsic Rewards

Alternatively, agents can predict transitions in the environment to define intrinsic
rewards. Most prominently, agents predict the next state given the current state
and applied action, and define the intrinsic reward as the discrepancy between
the predicted next state and the actually encountered next state.

Schmidhuber (1991) proposed such a prediction-based intrinsic reward for
exploration and identified one of its major shortcomings: stochasticity within
the environment can lead to unpredictable dynamics, leading to intrinsic rewards
remaining high at the face of stochasticity. This problem is commonly known as
the “noisy TV problem” (Burda et al., 2019a), named after an example of this
problem in which an agent is trained with a prediction-based intrinsic reward in
an environment with a random noise TV. The TV consistently shows random
noise images that change at every time step, so the agent would be unable to
predict the next frame. As a result, the agent consistently receives high intrinsic
rewards when walking in front of the TV and is incentivised to keep doing so.

Intrinsic curiosity module (ICM) Pathak et al. (2017) propose to learn state
representations using an inverse-dynamics objective and predict the next state rep-
resentation using a forward prediction model. The state representation network
takes in a state s and computes a lower dimensional representation z(s). This
state representation network is jointly trained with an inverse dynamics model
that predicts the applied action at from two consecutive state representations
z(st) and z(st+1). By training the state representations using this objective, the
representations are incentivised to only encode information that can be affected
by the agent’s actions. In addition, ICM trains a forward prediction network
that takes the representation of the current state z(st) and the current action at

3.1. Intrinsically Motivated Exploration 39

and tries to predict the representation of the next state ẑ(st+1). This network
is trained using a mean-squared error of the predicted representation of the next
state and the ground truth representation of the next state. This prediction error
also defines the intrinsic rewards:

rt
i =

(
ẑ(st+1)− z(st+1)

)2
(3.3)

Random network distillation (RND) Burda et al. (2019b) propose a simpli-
fied prediction-based intrinsic reward for exploration based on two observations:
(1) training and computation of complex models of dynamics is expensive and
(2) static random feature representation is surprisingly effective for observation
predictions (Burda et al., 2019a). RND randomly initialises two networks with
identical architectures that take states as input and compute a lower dimensional
representation. We refer to one of the networks as the target network and the
other as the main network. The parameters of the target network ψ are frozen
throughout training, and the main network parameters ψ are optimised to mimic
the representations of the target network by minimising the mean squared error
between the representations of both networks. As for ICM, the intrinsic reward
is defined as this error between the representations:

rt
i =

(
z(st;ψ)− z(st;ψ)

)2
(3.4)

Rewarding impact-driven exploration (RIDE) Raileanu and Rocktäschel (2020)
propose to reward the agent for applying actions which lead to significant change
in the environment. Such change is defined as the difference between representa-
tions of consecutive states, where the representation function z is trained using an
inverse dynamics model identical to ICM (Pathak et al., 2017). In order to avoid
the agent going back and forth between a group of states, an episodic state-count
Nep is added to the objective. This episodic count is reset after every episode and,
thus, incentivises the agent to visit many states within each episode. The intrin-
sic reward is then defined as a combination of the mean squared error between
the representations of consecutive states and the episodic count:

rt
i = (z(st+1)− z(st))2√

Nep(st+1)
(3.5)

40 Chapter 3. Decoupled Reinforcement Learning

Store experience

Exploration

Intrinsic reward
Sample
experience

Exploitation

Online Training Off-policy Training

Figure 3.1: Decoupled reinforcement learning (DeRL) training loop. On the left in
blue, the exploration policy πβ is trained from online interactions with the environment
to maximise the cumulative sum of intrinsic and extrinsic rewards. On the right in
red, the exploitation policy πe is trained only from off-policy experiences collected by
the exploration policy πβ to maximise the cumulative sum of extrinsic rewards.

3.2 Decoupled Reinforcement Learning

In this chapter, we propose decoupled reinforcement learning (DeRL) in which
we train two separate policies for exploration and exploitation to improve sample
efficiency and reduce sensitivity to hyperparameters of intrinsic rewards. We
train an exploration policy πβ with the intent to explore the environment. Using
the data collected by the exploration policy, we train a separate exploitation
policy πe, as visualised in Figure 3.1. Separating exploration and exploitation in
this way enables training of the exploration policy with intrinsic rewards without
modifying the training objective of the exploitation policy.

Formally, an agent trains an exploration policy πβ to maximise the sum of
intrinsic and extrinsic rewards,

πβ ∈ arg max
π

Es0∼µ,at∼π(st)

[∞∑
t=0

γt
(
rt

e + λrt
i

)]
(3.6)

= arg max
π

Es0∼µ,at∼π(st)
[
Gt

e+i

]
(3.7)

with Gt
e+i denoting the discounted returns computed using the combination of

extrinsic and intrinsic rewards with scaling factor λ and discount factor γ ∈ [0, 1).
During training of πβ, experience samples (st, at, rt

e, s
t+1) with extrinsic rewards

are collected in an experience storage D.

In addition to this typical intrinsically motivated RL, we train a separate
exploitation policy πe to maximise only expected cumulative extrinsic rewards

3.2. Decoupled Reinforcement Learning 41

using experience accumulated in D with Gt
e denoting discounted extrinsic returns.

πe ∈ arg max
π

E(st,at,rt
e,st+1)∼D

[∞∑
t=0

γtrt
e

]
(3.8)

= arg max
π

E(st,at,rt
e,st+1)∼D

[
Gt

e

]
(3.9)

Both exploration policy πβ and exploitation policy πe can be trained using
any RL algorithm given the defined objectives. We optimise the exploration
policy πβ as RL with intrinsic rewards, whereas we train πe on experience from
D that is generated from πβ’s interaction in the environment. Note that D only
contains extrinsic rewards and is off-policy data for the optimisation of πe as it
was generated by following πβ. Therefore, training the exploitation policy using
experience generated by the exploration policy requires off-policy RL. Off-policy
RL is concerned with the optimisation of a policy using experience generated
within the environment by following a separate behaviour policy. Below, we
propose two methods to apply such decoupled RL using an actor-critic and Q-
learning framework.

3.2.1 Decoupled Actor-Critic

In order to use traditionally on-policy RL such as the majority of policy gradient
algorithms (Section 2.3.3) to train πe using D, we can use off-policy correction to
account for differences in trajectory distributions of both πe and πβ.

One technique for off-policy correction is importance sampling (IS). In the
following, we train πe using an on-policy actor-critic RL algorithm with state
value function V , parameterised by θ, and policy πe, parameterised by ϕ. We
optimise the latter by minimising the actor loss given by:

L(ϕ) = E(st,at,rt
e,st+1)∼D

[
−ρ(at | st) log πe(at | st;ϕ) Ae(st)

]
(3.10)

with bootstrapped advantage estimates Ae(st) and IS weights ρ(at | st):

Ae(st) =
(
rt

e + γV (st+1; θ)− V (st; θ)
)

(3.11)

ρ(at | st) = πe(at | st;ϕ)
πβ(at | st)

(3.12)

Similarly, the value loss for πe using IS weights can be defined as follows:

L(θ) = E(st,at,rt
e,st+1)∼D

[
ρ(at | st)

(
rt

e + γV (st+1; θ)− V (st; θ)
)2
]

(3.13)

42 Chapter 3. Decoupled Reinforcement Learning

Algorithm 1 Decoupled Actor-Critic
Initialise: parameters ϕ of πe, θ of critic V , and πβ

Initialise: empty exploration data D ← ∅
for each episode do

Obtain initial state s0 ∼ µ

for each step t = 0, · · · , T do
Select action at ∼ πβ(st)
st+1, rt

e ← apply action at

Update πβ using RL on combined rewards (Equation 3.7)
D ← D ∪ (st, at, rt

e, s
t+1)

Update ϕ by minimising Equation 3.10 with D
Update θ by minimising Equation 3.13 with D
D ← ∅

end for
end for

We note that IS weights ρ can lead to high variance gradients with explod-
ing IS weights whenever πe(at | st;ϕ) � πβ(at | st) and vanishing weights for
πe(at | st;ϕ) � πβ(at | st) (Christianos et al., 2020). In particular very large
IS weights can cause significant instability of training. Various techniques have
been proposed to address such exploding weights, including clipping of impor-
tance weights (e.g., Munos et al., 2016; Espeholt et al., 2018). In our experiments,
we consider the application of clipped IS weights but find unclipped IS weights
to be sufficient in most experiments. The pseudocode for decoupled actor-critic
optimisation of πe can be found in Algorithm 1.

3.2.2 Decoupled Deep Q-Networks

Instead of optimising πe using actor-critic algorithms with off-policy corrections,
we can also apply off-policy algorithms such as Q-learning without the need for
any correction. We consider optimising πe using deep Q-networks (DQN) (Sec-
tion 2.3.2). For DQN optimisation, the following loss is minimised:

L(θ) = E(st,at,rt
e,st+1)∼D

[(
rt

e + γmax
a′

Q(st+1, a
′; θ)−Q(st, at; θ)

)2
]

(3.14)

with θ denoting the parameters of the periodically updated target network.

3.3. Evaluation Details 43

Algorithm 2 Decoupled Deep Q-Networks
Initialise: parameters θ of value function Q, and πβ

Initialise: empty exploration data D ← ∅
for each episode do

Obtain initial state s0 ∼ µ

for each step t = 0, · · · , T do
Select action at ∼ πβ(st)
st+1, rt

e ← apply action at

Update πβ using RL on combined rewards (Equation 3.7)
D ← D ∪ (st, at, rt

e, s
t+1)

Update θ by minimising Equation 3.14 with D
end for

end for

Pseudocode for decoupled deep Q-networks of πe can be found in Algorithm 2.
Note that D is only used for a single update in decoupled actor-critic, whereas
in decoupled deep Q-networks D represents a replay buffer (Lin, 1992a) that is
continually filled with experience.

3.3 Evaluation Details

We evaluate DeRL in two learning environments with a variety of RL algorithms
and intrinsic rewards.

3.3.1 Algorithms

Baselines As baselines, we consider two on-policy RL algorithms: advantage
actor-critic (A2C) and proximal policy optimisation (PPO) (Section 2.3.3). Both
algorithms are trained using the combined reward (Equation 3.1) with weighting
factor λ and varying intrinsic reward definitions.

DeRL For our decoupled RL optimisation, we consistently train πβ using A2C as
we found it to be more robust than PPO. For the optimisation of πe, we consider
A2C and PPO for decoupled actor-critic and decoupled deep Q-networks based on
DQN. We refer to these algorithms as DeA2C, DePPO and DeDQN. As intrinsic
rewards, we use Count and ICM to train πβ.

44 Chapter 3. Decoupled Reinforcement Learning

Intrinsic rewards We consider a total of five intrinsic rewards for exploration
in our evaluation. For count-based intrinsic rewards, we consider Count that
directly stores and increments state occurrences in a table as well as Hash-Count
that first groups states using the SimHash function (Tang et al., 2017). For
prediction-based intrinsic rewards, we conduct experiments with ICM (Pathak
et al., 2017), RND (Burda et al., 2019b), and RIDE (Raileanu and Rocktäschel,
2020). For more details on these intrinsic reward definitions, see Section 3.1.

3.3.2 Environments

We evaluate in eleven different tasks of two environments, DeepSea and Hallway.
Below, we describe both environments in more detail.

DeepSea DeepSea, visualised in Figure 3.2a, is an environment proposed as part
of the behaviour suite (Bsuite) for RL (Osband et al., 2020). The environment
targets the challenge of exploration and represents a N ×N grid where the agent
starts in the top left and has to reach a goal in the bottom right location. At each
time step, the agent moves one row down and can choose one out of two actions.
For each row, both actions are randomly assigned to left and right movement.
The agent observes the current location as a 2D one-hot encoding and receives
a small negative reward of −0.01

N
for moving right and 0 reward for moving left.

Additionally, the agent receives a reward of +1 for reaching the goal and the
episode ends after N time steps. The difficulty of the exploration in DeepSea can
be adjusted using N : the larger N , the harder it becomes for the agent to reach
the goal location for optimal returns of 0.99. We evaluate all algorithms in the
DeepSea task for N ∈ {10, 14, 20, 24, 30}.

Hallway As part of this work, we propose the Hallway environment as a new
environment where exploration and exploitation are misaligned, visualised in Fig-
ure 3.2b. In DeepSea, agents receive reward by reaching states at the end of
the environment, so intrinsic rewards for exploration strongly align with extrin-
sic rewards from the environment. We hypothesise that tasks in which intrinsic
and extrinsic rewards are not well aligned require carefully balanced exploration
through intrinsic rewards. Motivated by this hypothesis, we design the Hallway
environment in which an agent is located in a hallway starting on the left. A
goal can be reached by moving Nl cells to the right. In contrast to DeepSea, the

3.3. Evaluation Details 45

(a) DeepSea (b) Hallway

Figure 3.2: Visualisation of the DeepSea and Hallway environments.

goal is not necessarily located at the right end of the hallway, but there might be
further Nr empty cells to the right of the goal location. At each time step, the
agent can choose between three actions: move left, stay or move right. The agent
receives a reward of +1 for reaching the goal for the first time and every time
it stays at the goal location for 10 steps. Therefore, the agent needs to learn to
move to the goal and stay there for the remaining time steps of the episode to
collect further reward. Episodes end after 2Nl steps and small negative reward
of −0.01 is assigned for moving right or stay. Hallway tasks, in particular with
Nr > 0, require exploration through intrinsic rewards to be carefully balanced
because staying at the goal for optimal returns and exploration are not aligned.
We evaluate all algorithms in the Hallway environment with Nl ∈ {10, 20, 30}
and Nr either being 0 or equal to Nl.

3.3.3 Implementation Details

For all algorithms, we compute n-step return estimates (Sutton and Barto, 2018)
to reduce the bias of value estimates in all algorithms. On-policy training uses
four synchronous environments and an additional entropy regularisation term
in the policy loss (Mnih et al., 2016). For DeDQN, we compute DDQN tar-
gets (Section 2.3.2). For details on the conducted hyperparameter search and
hyperparameters used across experiments, see Appendix A.1.

We train all algorithms for 100,000 episodes and evaluate every 1,000 episodes
for a total of 100 evaluations by applying the evaluation policy in the respective
task for 8 episodes. We report averaged evaluation returns and stratified boot-

46 Chapter 3. Decoupled Reinforcement Learning

strap 95% confidence intervals (Agarwal et al., 2021) across five random seeds.
Optimal returns are indicated as a dashed horizontal line. We use a weighting
factor of λ = 1 for the combined reward signal unless stated otherwise.

3.4 Evaluation Results

In this section, we discuss the evaluation results of DeRL in comparison to intrin-
sically motivated RL baselines to investigate the following three hypotheses:

1. Intrinsically motivated RL is sensitive to varying scale λ and rate of decay
of intrinsic rewards,

2. DeRL is more robust than intrinsically motivated RL baselines to varying
scale and rate of decay, and

3. DeRL leads to similar or improved returns and sample efficiency compared
to intrinsically motivated RL baselines.

3.4.1 Hyperparameter Sensitivity

To investigate our first two hypotheses, we train all baselines and DeRL algo-
rithms on the combined reward in DeepSea N = 10 and Hallway Nl = Nr = 10
with varying λ and rates of decay. Figures 3.3 and 3.4 show the evaluation re-
turns of all baselines and DeRL algorithms with Count and ICM for varying λ and
rates of decay. A sensitivity analysis for all remaining intrinsic rewards can be
found in Appendix A.3. The evaluation results clearly show that intrinsically mo-
tivated RL training is indeed highly sensitive to scale and decay rate of intrinsic
rewards, not learning at all or reaching significantly lower evaluation returns for
many hyperparameter values. In particular in the Hallway environment, where
exploration and extrinsic rewards are misaligned, all algorithms exhibit significant
dependency on carefully tuned scale and rate of decay. This confirms our first
hypothesis. We further confirm our second hypothesis that DeRL algorithms are
more robust to varying scale and decay rate of intrinsic rewards, reaching higher
returns across a wider range of hyperparameters.

3.4. Evaluation Results 47

A2C PPO DeA2C DePPO DeDQN

0.01
0.1

0.25
0.5
1.0
2.0
4.0

10.0
100.0

Co
un

t

0 1
Episode return

0.01
0.1

0.25
0.5
1.0
2.0
4.0

10.0
100.0

IC
M

0 1
Episode return

0 1
Episode return

0 1
Episode return

0 1
Episode return

In
tri

ns
ic

co
ef

fic
ie

nt

In
tri

ns
ic

co
ef

fic
ie

nt

(a) DeepSea 10

0.01
0.1

0.25
0.5
1.0
2.0
4.0

10.0
100.0

0 1
Episode return

0.01
0.1

0.25
0.5
1.0
2.0
4.0

10.0
100.0

0 1
Episode return

0 1
Episode return

0 1
Episode return

0 1
Episode return

(b) Hallway Nl = Nr = 10

Figure 3.3: Average evaluation returns in DeepSea 10 and Hallway Nl = Nr = 10 with
varying scaling factors λ. Shading indicates 95% confidence intervals. A method that
is insensitive to hyperparameters will have final average episodic return concentrated
to the right for all hyperparameter values.

48 Chapter 3. Decoupled Reinforcement Learning

A2C PPO DeA2C DePPO DeDQN

0.01
0.1
0.2
1.0
5.0

10.0
100.0

Co
un

t

0 1
Episode return

1 091 082 081 075 071 061 051 041 03

IC
M

0 1
Episode return

0 1
Episode return

0 1
Episode return

0 1
Episode return

De
ca

y
ra

te
 (l

ea
rn

in
g

ra
te

 /
co

un
t i

nc
.)

De
ca

y
ra

te
 (l

ea
rn

in
g

ra
te

 /
co

un
t i

nc
.)

(a) DeepSea 10

0.01
0.1
0.2
1.0
5.0

10.0
100.0

0 1
Episode return

1 091 082 081 075 071 061 051 041 03

0 1
Episode return

0 1
Episode return

0 1
Episode return

0 1
Episode return

(b) Hallway Nl = Nr = 10

Figure 3.4: Average evaluation returns in DeepSea 10 and Hallway Nl = Nr = 10
with varying rates of decay. Shading indicates 95% confidence intervals.

Scale of intrinsic rewards To analyse the sensitivity of intrinsically motivated
RL to the scale of intrinsic rewards, Figure 3.3 shows average evaluation returns
for varying values of λ for baselines and DeRL algorithms. In DeepSea N = 10,
DeA2C and DeDQN exhibit improved robustness by reaching close to optimal
returns for almost all values of λ. In contrast, DePPO and the baselines are
found to be more sensitive in particular to large values of λ. In Hallway, all
algorithms exhibit larger variance for varying λ compared to DeepSea with no
significant learning being observed for large or small values of λ, with DeA2C
and DePPO demonstrating slightly more robustness. These results indicate the
sensitivity to values of λ. Even small deviations can make the difference between
learning and not learning at all.

3.4. Evaluation Results 49

Table 3.1: Average evaluation returns and a single standard deviation in all DeepSea
and Hallway tasks over 100,000 episodes. The highest achieved returns in each task
are highlighted in bold together with all returns within a single standard deviation.
For DeRL algorithms, evaluations are executed using the exploitation policy.

Alg DeepSea 10 DeepSea 14 DeepSea 20 DeepSea 24 DeepSea 30 Hallway 10-0 Hallway 10-10 Hallway 20-0 Hallway 20-20 Hallway 30-0 Hallway 30-30

A2C 0.93 ± 0.22 0.00 0.00 0.00 0.00 0.67± 0.05 0.49± 0.09 0.42± 0.02 0.50± 0.03 0.28± 0.08 0.42± 0.08
A2C Count 0.98 ± 0.07 0.94 ± 0.16 0.74 ± 0.10 0.11± 0.15 −0.01 0.85 ± 0.01 0.85 ± 0.02 0.61± 0.03 0.55 ± 0.06 −0.33± 0.15 −0.06± 0.07
A2C Hash-Count 0.98 ± 0.07 0.96 ± 0.15 0.39± 0.14 0.53 ± 0.12 −0.01 0.85 ± 0.01 0.85 ± 0.03 0.56± 0.03 0.55 ± 0.06 −0.34± 0.15 −0.13± 0.11
A2C ICM 0.87± 0.20 0.69± 0.31 0.54± 0.23 0.46 ± 0.30 0.08 ± 0.12 0.62± 0.17 0.57± 0.17 0.27± 0.12 0.78 ± 0.27 1.16 ± 0.47 0.64 ± 0.38
A2C RND 0.06± 0.01 0.19± 0.02 −0.01 −0.01 −0.01 −0.12± 0.02 −0.07 −0.20± 0.01 −0.24 −0.24± 0.01 −0.12
A2C RIDE 0.00 0.00 0.00 0.00 0.00 0.85 ± 0.04 0.85 ± 0.02 0.70 0.62 0.37± 0.04 0.28± 0.08

PPO 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
PPO Count 0.84± 0.10 0.70± 0.17 0.46± 0.19 0.17± 0.18 0.20 ± 0.15 0.00± 0.01 0.00 0.00± 0.01 0.00± 0.01 0.00 0.00± 0.01
PPO Hash-Count 0.86± 0.08 0.77± 0.13 0.34± 0.14 0.28± 0.20 0.12 ± 0.13 0.39± 0.11 0.10± 0.07 0.00 0.00 0.00 0.00
PPO ICM 0.84± 0.17 0.28± 0.17 0.00± 0.03 0.12± 0.17 0.00± 0.03 0.05± 0.15 0.11± 0.15 0.02± 0.16 0.08± 0.19 −0.04± 0.08 −0.02± 0.14
PPO RND 0.26± 0.12 0.15± 0.08 −0.01 0.00 −0.01 −0.04± 0.04 −0.04± 0.11 −0.21± 0.06 −0.17± 0.09 −0.27± 0.10 −0.27± 0.11
PPO RIDE 0.73± 0.08 0.00 0.00± 0.02 −0.01 −0.01 −0.10± 0.03 0.02± 0.08 −0.21± 0.03 −0.08± 0.08 −0.32± 0.04 −0.29± 0.08

DeA2C Count 0.98 ± 0.10 0.65± 0.23 0.42± 0.16 0.07± 0.10 0.09 ± 0.08 0.84 ± 0.07 0.84 ± 0.09 0.42± 0.02 0.70 ± 0.01 0.55 0.22± 0.02
DeA2C ICM 0.86± 0.19 0.52± 0.28 0.27± 0.24 0.08± 0.14 0.05 ± 0.11 0.77± 0.18 0.80± 0.17 0.44± 0.15 0.53 ± 0.20 0.52± 0.34 0.97 ± 0.51
DePPO Count 0.61± 0.20 0.92 ± 0.18 −0.01± 0.01 0.63 ± 0.27 −0.01 0.73± 0.10 0.80± 0.08 0.56± 0.01 0.55 ± 0.04 −0.20± 0.17 −0.06± 0.07
DePPO ICM 0.61± 0.18 0.37± 0.17 0.00± 0.01 −0.01 0.00 0.82± 0.11 0.81± 0.11 0.64± 0.16 0.57 ± 0.07 −0.01± 0.25 0.26± 0.06
DeDQN Count 0.98 ± 0.09 0.95 ± 0.17 0.40± 0.08 0.53 ± 0.27 0.10 ± 0.10 −0.13± 0.04 −0.15± 0.04 −0.05± 0.05 −0.12± 0.08 −0.17± 0.07 −0.10± 0.06
DeDQN ICM 0.94 ± 0.20 0.59± 0.40 0.16± 0.12 0.24± 0.25 0.05 ± 0.12 −0.09± 0.09 0.02± 0.16 −0.11± 0.09 −0.19± 0.08 −0.26± 0.08 −0.19± 0.08

Decay of intrinsic rewards We also investigate the sensitivity of intrinsically
motivated baselines and DeRL algorithms to the rate of decay of intrinsic rewards.
For count-based and prediction-based intrinsic rewards, we use the increment of
the state count N(s) and the learning rate, respectively, to determine and vary the
rate of decay. Figure 3.4 shows average evaluation returns of baselines and DeRL
with varying rates of decay in both DeepSea N = 10 and Hallway Nl = Nr = 10.
A2C is shown to be more robust to varying rates of decay in both environments
compared to PPO. DePPO demonstrates larger sensitivity compared to A2C,
but DeA2C and DeDQN are again shown to be the most robust algorithms,
especially with Count intrinsic rewards, exhibiting high evaluation returns for
most considered values in DeepSea N = 10. Similar to λ sensitivity, we observe
very significant dependency on the rate of decay in the Hallway task with DeA2C
exhibiting improved robustness to varying values.

3.4.2 Evaluation Returns

Lastly, we report evaluation returns of all algorithms across all DeepSea and
Hallway tasks in Table 3.1. Average returns and standard deviations are com-
puted across all 100 evaluations after being averaged across five seeds to indicate
achieved returns as well as sample efficiency. Additionally, we present normalised
returns with 95% confidence intervals across both environments in Figure 3.5.

50 Chapter 3. Decoupled Reinforcement Learning

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

 re
tu

rn
A2C
A2C Count
PPO
PPO Count
DeA2C Count
DePPO Count
DeDQN Count

0 20000 40000 60000 80000 100000
Episode

A2C
A2C ICM
PPO
PPO Hash-Count
DeA2C ICM
DePPO ICM
DeDQN ICM

Figure 3.5: Normalised evaluation returns for DeepSea (left) and Hallway (right).
Returns for each task are normalised to be within [0, 1] before averaged returns and
95% confidence intervals are computed across all tasks and five random seeds.

Tables with maximum achieved evaluation returns and learning curves for each
individual task can be found in Appendix A.2.

In DeepSea, DeDQN performs best out of all algorithms (Figure 3.5). DeDQN
converges to returns comparable to or higher than the best performing baselines
exhibiting highest average evaluation returns in all tasks but DeepSea 20. DeA2C
and DePPO demonstrate similar returns and sample efficiency in some of these
tasks (see Figures A.1a and A.1b). In DeepSea 24 (Figure A.1d) and harder
Hallway tasks with Nl = 20, Nr = 0 and Nl = Nr = 30 (Figures A.3b and A.3f),
the exploitation policies of DeA2C and DePPO converge to the highest returns
and are shown to be more sample efficient reaching high returns after up to 40%
fewer episodes of training compared to the best performing baselines. Generally,
we can see that DeA2C learns the optimal policy in the majority of Hallway
tasks for some of the five executed runs, but fails to converge to such behaviour
consistently. Instead, the majority of baselines and some DeRL runs learn to
reach the goal but move back and forth between the goal and its left neighboured
cell. Presumably, consistently staying at the goal is rarely discovered due to the
small negative reward of staying at a cell.

However, we also observe some failure cases for DeRL algorithms. DeDQN
achieves low returns in the Hallway environment compared to both on-policy
DeA2C and DePPO. Also, significant variance can be observed for baselines and
DeRL algorithms in harder DeepSea and most Hallway tasks. Off-policy optimi-
sation is theoretically independent of the policy generating training samples, and
in DeA2C and DePPO IS weight correction is applied to correct for the off-policy

3.4. Evaluation Results 51

0 20000 40000 60000 80000 100000
Episode

0.25

0.00

0.25

0.50

0.75

1.00

1.25

Ep
iso

de
 re

tu
rn

0

1

2

3

4

5

Lo
g

IS
 w

ei
gh

ts

Figure 3.6: Evaluation returns and log importance sampling weights for DeA2C Count
in DeepSea N = 14, showing the instability of returns and distribution shift between
the exploration policy πβ and the exploitation policy πe, as indicated by the spikes in
importance sampling weights.

training data. However, we believe distribution shift (Fujimoto et al., 2018) is
causing inconsistent returns when optimising the exploitation policy from data
generated by πβ. Figure 3.6 visualises unstable IS weights for DeA2C in the
DeepSea task with N = 14 averaged over five seeds. These appear to correlate
with some of the noticeable drops in returns throughout training, indicating the
negative impact of divergence of exploration and exploitation policies on RL train-
ing of πe. Even when applying Retrace(λ) (Munos et al., 2016) to clip IS weights,
similar results are observed.

3.4.3 Exploration using only Intrinsic Rewards

Prior work on intrinsic rewards for exploration investigated the effectiveness of
training using only intrinsic rewards and no extrinsic rewards from the environ-
ment (Pathak et al., 2017; Burda et al., 2019b; Raileanu and Rocktäschel, 2020;
Flet-Berliac et al., 2021). Motivated by these experiments, we also investigate
the possibility of optimising the exploration policy πβ using only intrinsic rewards.
Such optimisation would likely lead to increased robustness to hyperparameters
of intrinsic rewards as they would not be combined with extrinsic rewards of the
environment. However, we also find that the optimisation of πβ without extrin-
sic rewards causes further divergence of πβ and πe. It should be noted that the
evaluation policy is still trained using extrinsic rewards.

We conduct experiments in the DeepSea 10 and Hallway Nl = Nr = 20 tasks
training DeA2C with Count intrinsic rewards for 20,000 episodes. Results are

52 Chapter 3. Decoupled Reinforcement Learning

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.6

0.8

1.0

1.2

1.4

1.6

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0

1

2

3

4

D
KL

(
e||

)

r = ri

r = re + ri
r = ri, = 0.1, e = 0.1
r = re + ri, = 0.1, e = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.6

0.8

1.0

1.2

1.4

1.6

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0

1

2

3

4

D
KL

(
e||

)

(a) DeepSea N = 10

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
KL

(
e||

)

r = ri

r = re + ri
r = ri, = 0.01, e = 0.0001
r = re + ri, = 0.01, e = 0.0001

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
KL

(
e||

)

(b) Hallway Nl = Nr = 20

Figure 3.7: Evaluation and training returns, IS weights and KL-divergence of explo-
ration and exploitation policy for training of DeA2C with Count in (a) DeepSea 10
and (b) Hallway Nl = Nr = 20 with intrinsic and extrinsic rewards or only intrinsic
rewards as training signal for πβ, and with KL-divergence constraints with coefficients
αβ and αe. Evaluation and training returns are achieved using the exploitation and
exploration policies, respectively. Shading indicates 95% confidence intervals.

averaged across three seeds and we directly compare optimising πβ using either
the sum of extrinsic and intrinsic rewards (orange) or only using intrinsic rewards
(blue) in Figure 3.7. First, we find that the exploration policy is unable to learn
to solve the task, as shown by the training returns of πβ (bottom left) when only
being trained with intrinsic rewards (blue). Second, we find that training the
exploration policy with only intrinsic rewards does lead to increased divergence
of both policies seen in IS weights (top right) and the KL divergence (bottom
right). Training of the exploitation policy appears to suffer from such differences
in the more challenging Hallway task, but in DeepSea the exploitation policy
was successfully trained to solve the task (top left) despite the exploration policy
never reaching high returns. Our results show the feasibility of training πβ using
only intrinsic rewards but also the challenge of increased distribution shift.

3.4.4 Divergence Constraints

In order to address distribution shift caused by diverging exploration and exploita-
tion policies, we investigate the application of divergence constraints proposed in
the literature of offline RL (Levine et al., 2020). These auxiliary objectives are

3.5. Related Work 53

introduced to the optimisation and enforce πe and πβ to not diverge significantly
by introducing a term αD(πe, πβ) to the optimisation loss. This term is based
on a distance measure D between the distribution of policies πβ and πe and
some weighting hyperparameter α. A common distance measure is the Kullback-
Leibler (KL) divergence, which has been applied in offline RL (Jaques et al., 2019)
to restrict divergence of policies, and can be written as follows:

DKL(πe(st), πβ(st)) = Eat∼πe(st)
[
log πe(a | st)− log πβ(a | st)

]
(3.15)

Wu et al. (2019) discuss further distances measures for policies but found most
metrics to perform comparably.

In DeRL, divergence constraints can be directly applied to the optimisation
of either the exploration πβ or exploitation policy πe, i.e. can choose to keep πβ

close to πe and likewise can enforce πe to stay close to πβ. We consider either of
these directions as well as a combination of both constraints.

We evaluate the application of KL constraints as regularisers in the policy loss
of the exploration policy, αβDKL(πβ, πe), and exploitation policy, αeDKL(πe, πβ),
with varying weights αβ and αe, respectively. These constraints are applied in
both settings introduced in Section 3.4.3 with πβ being optimised using only intrin-
sic (green) or intrinsic and extrinsic rewards (red) with results shown in Figure 3.7
for selected constraint coefficients. We find KL divergence constraints successfully
address distribution shift and thereby keep both policies close to each other, even
if πβ is only trained using intrinsic rewards. Such minimised divergence also leads
to reduced variability of returns in both tasks. These results indicate the feasibil-
ity of training πβ using only intrinsic rewards and the effectiveness of divergence
constraints to minimise distribution shift. We further evaluate the sensitivity of
DeA2C with KL divergence constraints but do not find such regularisation to
significantly improve robustness. For figures showing distribution shift, training
and evaluation returns for a range of KL constraint coefficients, αβ and αe as well
the conducted sensitivity analysis, see Appendix A.4.

3.5 Related Work

Decoupled policies Concurrently to our work, Whitney et al. (2021); Liu et al.
(2021a,b) proposed alternative decoupling approaches. For the meta RL setting,
Liu et al. (2021a) proposed to train separate exploration and exploitation poli-

54 Chapter 3. Decoupled Reinforcement Learning

cies guided by task-specific information for fast adaptation in novel tasks. For
multi-agent RL, Liu et al. (2021b) trained separate exploration and exploita-
tion policies using off-policy RL to focus coordinated exploration across multiple
agents towards underexplored parts within the state space. However, a mixture of
both policies is applied to explore whereas our work fully decouples both policies
and their training. Furthermore, both of these approaches consider the meta-
learning and multi-agent settings, respectively, and do not address the challenge
of single-agent exploration we focus on.

Independently from our work, Whitney et al. (2021) proposed to train an
exploration policy using only intrinsic rewards and train a task policy (corre-
sponding to our exploitation policy πe) using off-policy soft Double-DQN (van
Hasselt et al., 2016). They apply a factored policy of both the task and explo-
ration policies with optimisations focused on fast adaptation of the exploration
policy. In contrast, we fully decouple both trained policies and find that training
of the task policy using on-policy actor-critic algorithms with off-policy correction
leads to higher returns and less sensitivity to hyperparameters in several tasks.
Furthermore, we evaluate DeRL with several intrinsic rewards whereas Whitney
et al. (2021) use a single count-based intrinsic reward.

Offline RL Offline RL is a related field to our work, that aims to learn a policy
from a fixed dataset of transitions without further interaction with the environ-
ment. The training of the exploitation policy in DeRL can be considered to be
offline RL, as it is trained using data generated by the exploration policy without
ever interacting with the environment itself. However in contrast to our work, of-
fline RL often assumes that the behaviour policy πβ used to generate the data is
unknown. In contrast, in DeRL we do have access to both the exploitation policy
πe we train to solve the task as well as the behaviour policy in the form of the
exploration policy πβ. This access to both the exploitation and behaviour policy
allows us to directly optimise the policy used to gather data with this optimisa-
tion in mind. Furthermore, we can directly minimise the distribution shift caused
by the exploration and exploitation policies, as studied in Section 3.4.4, which is
only possible because we have access to and optimise both of these policies. How-
ever, similar to offline RL (Fujimoto et al., 2018; Levine et al., 2020), distribution
shift remains a major challenge in our approach and can cause instabilities during
the training of the exploitation policy.

3.6. Conclusion 55

Extensions of DeRL Further research has built on our DeRL work and extended
it to make it more applicable to more complex exploration tasks and settings.
Most notably, Chen et al. (2022) proposed a novel approach that extends DeRL
with a constrained optimisation formulation. By formulating the optimisation of
both policies as a constrained optimisation problem, they are able to compute the
weighting hyperparameter λ in a principled way to optimally trade-off between
exploration and exploitation, and alternatively optimise λ and the trained policies.
They further find that collecting experiences from the exploration policy and
exploitation policy, instead of collecting all experiences with the exploration policy
as in our approach, is necessary for stable optimisation in more complex problems.
Mark et al. (2023) recently leveraged decoupled policy optimisation for the offline-
to-online setting in which a policy is trained offline and then fine-tuned online.
They find that decoupling exploration and exploitation can lead to more robust
and efficient fine-tuning of the offline-trained policy.

3.6 Conclusion

In this chapter, we proposed Decoupled RL (DeRL) which decouples exploration
and exploitation into two separate policies. DeRL optimises the exploration policy
with additional intrinsic rewards to incentivise exploration and trains the exploita-
tion policy using only extrinsic rewards from data generated by the exploration
policy. Based on this general framework, we formulate decoupled actor-critic and
decoupled deep Q-networks and evaluated in two sparse-reward environments.
Our results demonstrate that intrinsically motivated RL is highly dependent on
careful hyperparameter tuning of intrinsic rewards, indicating the need for more
robust solutions. We show that decoupling exploration and exploitation is possi-
ble and does lead to significant benefits in robustness to varying scale and rate
of decay of intrinsic rewards. Furthermore, we identify distribution shift as a
challenge in separating the RL optimisation into two policies with separate op-
timisation objectives and investigate the application of divergence constraints
to minimise such divergence of both policies. Our results demonstrate the ef-
fectiveness of divergence constraint regularisation and indicate improved sample
efficiency of DeRL in some tasks by reaching high returns in fewer interactions
in the environment. Lastly, we demonstrated the feasibility of training the ex-
ploration policy using only intrinsic rewards, in particular alongside divergence

56 Chapter 3. Decoupled Reinforcement Learning

constraints to limit distribution shift. Overall, DeRL is a promising approach that
demonstrates that exploration and exploitation are interconnected but fundamen-
tally different problems and that decoupled optimisation for both objectives can
lead to more robust and efficient learning.

Chapter 4

Benchmarking Cooperative
Multi-Agent Reinforcement

Learning Algorithms

Publication
This chapter is based on and adapted from the following publication:

Georgios Papoudakis, Filippos Christianos, Lukas Schäfer, and Stefano
V. Albrecht. “Benchmarking multi-agent deep reinforcement learning algo-
rithms in cooperative tasks.” In Advances in Neural Information Processing
Systems, Track on Datasets and Benchmarks. 2021.

After discussing the challenge of exploration in the context of single-agent re-
inforcement learning in Chapter 3, we will now turn our attention to the setting
of multi-agent reinforcement learning (MARL). First, we will present a bench-
mark study that we conducted to compare the performance of commonly used
MARL algorithms across a diverse set of cooperative multi-agent tasks in this
chapter. The results and analysis of this study will then inform the subsequent
chapters in which we address identified limitations of existing algorithms. In
this chapter, we focus on the common-reward setting under the Dec-POMDP
formalism (Section 2.5).

As outlined in Section 2.6, MARL algorithms use RL techniques to co-train a
set of agents in a multi-agent system. Recent years have seen a plethora of new
MARL algorithms that integrate ideas from deep learning in MARL (Hernandez-

57

58 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

Leal et al., 2019). However, comparison of MARL algorithms is difficult due to
a lack of established benchmark tasks, evaluation protocols, and metrics. While
several comparative studies exist for single-agent RL (Duan et al., 2016; Hender-
son et al., 2018; Wang et al., 2019b), we are unaware of such comparative studies
for recent deep MARL algorithms. We believe that a thorough benchmark of
existing MARL algorithms would be important for the field to understand the
relative strengths and limitations of algorithms, and inform future research.

With this motivation, we conduct an empirical comparison of nine MARL
algorithms (listed in Table 2.1) across three classes of MARL algorithms: inde-
pendent learning (Section 2.6.1), which applies single-agent RL algorithms for
each agent without consideration of the multi-agent structure; multi-agent policy
gradient algorithms with centralised critics (Section 2.6.2.2); and value decom-
position (Section 2.6.2.1) algorithms. All algorithms are evaluated in a total
of 25 different cooperative multi-agent tasks within two matrix games and four
multi-agent environments.

For fair comparisons, we optimise the hyperparameters of all algorithm for
each environment using a grid-search. We report identified best hyperparameters
in Appendix B.5 for future research, and we report the maximum and average
evaluation returns during training. MARL algorithms commonly share parame-
ters of networks across agents to reduce computational cost and improve sample
efficiency (Christianos et al., 2021). Due to the impact of parameter sharing on
the learning process, we evaluate all algorithms in all tasks once with and once
without parameter sharing. In addition to reporting detailed benchmark results,
we analyse the results, and discuss insights regarding the effectiveness of different
learning approaches under certain environment properties. Overall, this work has
three main contributions:

1. We provide a comprehensive benchmark of nine state-of-the-art
MARL algorithms across 25 cooperative learning tasks. We report
maximum and average evaluation returns, report best-performing hyperpa-
rameters for each algorithm in each environment, and provide insights into
the relative strengths and limitations of each algorithm.

2. We open-source two new multi-agent environments for future re-
search: level-based foraging (LBF) and multi-robot warehouse (RWARE).1

1The environments are available at https://github.com/uoe-agents/lb-foraging and

https://github.com/uoe-agents/lb-foraging

4.1. Multi-Agent Environments 59

3. We open-source the Extended PyMARL (EPyMARL) codebase,2

an extension of the PyMARL codebase (Samvelyan et al., 2019), that in-
cludes implementations of five additional policy gradient algorithms (IA2C,
IPPO, MADDPG, MAA2C, and MAPPO), allows for more flexible configu-
ration of implementation details, and adds compatibility with more environ-
ments. Since its release, EPyMARL has received notable attention in the
MARL research community with several projects leveraging the codebase
for their research (e.g., Torbati et al., 2023; Leroy et al., 2023).

4.1 Multi-Agent Environments

We evaluate the algorithms in two finitely repeated matrix games and four multi-
agent environments within which we define a total of 25 different learning tasks.
We treat all tasks as common reward problems, i.e. all agents receive identical
rewards at all time steps. For the level-based foraging and multi-robot warehouse
environments, which are typically defined as general-sum problems, we treat them
as common reward problems for this work. In this case, all agents receive rewards
for successful collection of items and deliveries of requested shelves, respectively,
irrespective of which agents contributed to such collections and deliveries. The
considered tasks range over various properties including the degree of observability
(whether agents can see the full environment state or only parts of it), reward
density (receiving frequent/dense vs infrequent/sparse non-zero rewards), and
the number of agents involved. Table 4.1 lists environments with properties, and
we give more detailed descriptions below. Each of the following environments
addresses a specific challenge of MARL.

4.1.1 Repeated Matrix Games

We consider two cooperative matrix games proposed by Claus and Boutilier
(1998): the climbing and penalty game. The common-payoff matrices of the
climbing and penalty game, respectively, are:

0 6 5
−30 7 0
11 −30 0

k 0 10
0 2 0
10 0 k

https://github.com/uoe-agents/robotic-warehouse.

2https://github.com/uoe-agents/epymarl

https://github.com/uoe-agents/robotic-warehouse
https://github.com/uoe-agents/epymarl

60 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

Table 4.1: Overview of environments and properties.

Observability Rew. Sparsity Agents Main Difficulty

Matrix Games Full Dense 2 Sub-optimal equilibria
MPE Partial / Full Dense 2-3 Coordination

SMAC Partial Dense 2-10
Partial observability,
many agents

LBF Partial / Full Sparse 2-4 Coordination

RWARE Partial Sparse 2-4
Sparse reward,
partial observability

where k ≤ 0 is a penalty term. We evaluate in the penalty game for k ∈
{−100,−75,−50,−25, 0}. The difficulty of this game strongly correlates with
k: the smaller k, the harder it becomes to identify the optimal policy due to the
growing risk of penalty k. Both games are applied as repeated matrix games with
an episode length of 25 and agents are given constant observations at each time
step. These matrix games are challenging due to the existence of local minima
in the form of sub-optimal Nash equilibria (Nash, 1951). Slight deviations from
optimal policies by one of the agents can result in significant penalties, so agents
might get stuck in risk-free (deviations from any agent does not significantly
impede payoff) local optima.

4.1.2 Multi-Agent Particle Environment

The multi-agent particle environments (MPE) (Mordatch and Abbeel, 2018; Lowe
et al., 2017) consists of several two-dimensional navigation tasks. We investigate
four tasks that emphasise coordination: speaker-listener, spread, adversary, and
predator-prey. Agent observations consist of feature vectors including relative
agent and landmark locations. Unless specified otherwise, agents choose between
five discrete actions consisting of movement in each cardinal direction and to do
nothing. All tasks but speaker-listener are fully observable. MPE tasks serve as a
benchmark for agent coordination due to the diverse and challenging coordination
required by agents. Adversary and predator-prey are originally competitive tasks.
To convert them into fully cooperative tasks, we control the adversary and prey,
respectively, with a pre-trained policy obtained by training all agents with the

4.1. Multi-Agent Environments 61

(a) (b) (c) (d)

Figure 4.1: Illustration of MPE tasks (a) speaker-listener, (b) spread, (c) adversary
and (d) predator-prey.

MADDPG algorithm for 25,000 episodes. Below, we describe each task in more
detail.

Speaker-listener In this task (Section 4.1.2), one static speaker agent has to
communicate a goal landmark to a listening agent capable of moving. There are
a total of three landmarks in the environment and both agents are rewarded with
the negative Euclidean distance of the listener agent towards the goal landmark.
The speaker agent only observes the colour of the goal landmark. Meanwhile,
the listener agent observes its velocity, relative position to each landmark and
the communication of the speaker agent as its observation. The speaker agent
chooses between three possible actions to communicate to the listener agent, with
which the agent needs to learn to encode the goal landmark, and the listener agent
chooses among the usual movement actions.

Spread In this task (Section 4.1.2), three agents are trained to move to three
landmarks while avoiding collisions with each other. All agents observe their
velocity, position, relative position to all other agents and landmarks. Agents are
rewarded with the sum of negative minimum distances from each landmark to
any agent and an additional penalty for collisions of agents with each other.

Adversary In this task (Section 4.1.2), two cooperating agents compete with a
third adversary agent. There are two landmarks out of which one is randomly
selected to be the goal landmark. Cooperative agents observe their relative posi-
tion to the goal, relative position to all other agents, and relative positions to all
landmarks. The adversary agent also observes all relative positions to agents and

62 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

landmarks but receives no information about which landmark is the goal. All
agents are rewarded with the negative minimum distance to the goal, and the co-
operative agents are additionally rewarded for the distance of the adversary agent
to the goal landmark. Therefore, the cooperative agents have to move to both
landmarks to avoid the adversary from identifying which landmark is the goal and
reaching it as well. In our evaluation, we use a pre-trained policy to control the
adversary agent and only train the two cooperative agents as a common-reward
task.

Predator-prey In this task (Section 4.1.2), three cooperating predators hunt a
forth agent controlling a faster prey in an environment with two landmarks as
obstacles. All agents observe their own velocity and position as well as relative
positions to all other landmarks and agents. Predator agents also observe the
velocity of the prey. The agent controlling the prey is punished for any collisions
with predators as well as for leaving the observable environment area (to prevent
it from simply running away without needing to learn to evade). Predator agents
are collectively rewarded for collisions with the prey. Similar to the Adversary
scenario, we use a pre-trained policy for the prey and only train the predator
agents as a common-reward task.

4.1.3 StarCraft Multi-Agent Challenge

The StarCraft multi-agent challenge (SMAC) (Samvelyan et al., 2019) is a set
of fully cooperative, partially observable multi-agent tasks. The environment
implements a variety of combat scenarios based on the popular real-time strategy
game StarCraft II. Each task is defined by a map and a set of units within each
team. The units of one team is controlled by MARL agents, with each agent
controlling the actions of a single unit, and the opponent team of units being
controlled by a fixed built-in AI of the StarCraft II game. Tasks vary in the
number and types of units controlled by the agents as well as the map. Agents
observe the health and other statistics of units within a fixed visibility radius, and
for actions can choose to move in cardinal directions, select enemies to attack, or
allies to heal (depending on the unit controlled). Agents receive common rewards
including positive rewards for defeating enemy units and causing damage, and
negative rewards for losing their own units and health. The primary challenge of
SMAC tasks is in the partial observability and the large number of heterogeneous

4.1. Multi-Agent Environments 63

(a) (b)

Figure 4.2: Examples of SMAC tasks with various team configurations and unit types.

agents in most tasks. We consider five tasks in SMAC, each with a different team
configuration and unit types. We provide a brief description of each task below:

SMAC 2s_vs_1sc In this scenario, agents control two stalker units and defeat
the enemy team consisting of a single, game-controlled spine crawler.

SMAC 3s5z In this symmetric scenario, each team controls three stalkers and
five zerglings for a total of eight agents.

SMAC MMM2 In this symmetric scenario, each team controls seven marines,
two marauders, and one medivac unit. The medivac unit assists other team
members by healing them instead of inflicting damage to the enemy team.

SMAC corridor In this asymmetric scenario, agents control six zealots fighting
an enemy team of 24 zerglings controlled by the game. This task requires agents
to make effective use of terrain features to win.

SMAC 3s_vs_5z Finally, in this scenario a team of three stalkers is controlled
by agents to fight against a team of five game-controlled zerglings.

4.1.4 Level-Based Foraging

In level-based foraging (LBF) (Albrecht and Ramamoorthy, 2013; Albrecht and
Stone, 2017), agents must collect food items that are randomly scattered in a grid-
world. Both agents and items are assigned levels at the beginning of each episode.
By default, agents observe the level and position of all agents and food items

64 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

(a) Level-based foraging (LBF) (b) Multi-robot warehouse (RWARE)

Figure 4.3: Illustrations of the open-sourced multi-agent environments. From Chris-
tianos et al. (2020).

but partially observable variants of tasks exist that obfuscate the information of
agents and items outside of a defined visibility threshold. Agents choose between
six discrete actions: one no-op action, an action to attempt to pick up adjacent
items, and one movement action for each of the four cardinal directions. Agents
only receive a non-zero reward for successfully picking up food items so rewards
are sparse. Agents are only successful in picking up items in neigbouring cells
if the sum of the levels of all agents being next to the item and selecting the
pick-up action is greater or equal to the level of item. Therefore, agents need
to cooperate to pick up items with a higher level. The magnitude of rewards is
normalised based on the level of food items such that the optimal returns within
each episode, achieved for picking-up all food items, is equal to one.

LBF allows for many different tasks to be configured, including partial observ-
ability or a highly cooperative task where agents and item levels are assigned such
that all agents need to cooperate to pick up the items. We define seven distinct
tasks with a variable world size, number of agents, observability, and cooperation
settings indicating whether all agents are required to load a food item or not.

4.1.5 Multi-Robot Warehouse

The multi-robot warehouse environment (RWARE) represents a partially observ-
able environment with sparse rewards. RWARE simulates a grid-world warehouse
in which agents (robots) must locate and deliver requested shelves to workstations
and return them after delivery. Agents observe information about any agents and
shelves in their immediate surrounding, and choose between five discrete actions:
no-op, move forward, rotate left, rotate right, and load/unload a shelf. Agents

4.2. Evaluation 65

can not move forward if the cell is already occupied by another agent, and while
carrying a shelf agents are only able to move to cells that do not contain shelves.
To load a shelf, agents have to move to the same cell as the shelf and choose the
load action. Similarly, agents are only able to unload a currently loaded shelf in
a location that has currently no shelf but initially did store a shelf. Agents are
only rewarded for delivering requested shelves by carrying them to the delivery
locations and the bottom of the warehouse. After delivering a requested shelf,
a new currently unrequested shelf is sampled uniformly at random and added
to the list of requested shelves. In this way, the number of currently requested
shelves remains constant.

We define three tasks that vary in size of the grid-world and number of agents.
For all considered evaluation tasks, the number of requested shelves is equal to
the number of agents at all times. RWARE is a challenging exploration task
since agents need to follow a long sequence of actions to receive any rewards,
making rewards in RWARE tasks highly sparse. Additionally, for agents to suc-
cessfully deliver multiple requested shelves, after each delivery of a requested
shelf they need to find a empty location in the warehouse to unload the currently
carried shelf. They receive no reward for such unloading but need to unload
their previously delivered shelf to be able to collect and deliver a new shelf. Fur-
thermore, observations are sparse and high-dimensional compared to the other
environments.

4.2 Evaluation

4.2.1 Evaluation Protocol

Off-policy MARL algorithms are typically more sample efficient compared to on-
policy algorithms due to their ability to reuse previously collected samples to
update their policies and value functions. However, they often also require more
wall-clock time to train for the same number of time steps due to the frequency
of updates. In our experiments, we collect data from a single environment for off-
policy MARL algorithms and update once after an episode has been completed
using a batch of 32 episodes sampled from the replay buffer. In contrast for on-
policy MARL algorithms, we collect experiences from ten environments in parallel
and update once with the just collected experience.

66 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

To account for this difference in update frequency per environment interac-
tions and allow for fair comparisons, we train on-policy algorithms for a factor of
ten times more samples than off-policy algorithms which results in all algorithms
being trained for an identical number of total updates. In matrix games, we
train on-policy algorithms for 2.5 million time steps and off-policy algorithms for
250 thousand time steps, in MPE and LBF we train on-policy algorithms for 20
million time steps and off-policy algorithms for two million time steps, while in
SMAC and RWARE, we train on-policy and off-policy algorithms for 40 and four
million time steps, respectively. Throughout training, we evaluate the current
policies at regular intervals for a total of 41 evaluations. For each evaluation, we
run 100 episodes and record the average achieved return.

As evaluation metrics, we identify the evaluation in which each algorithm
achieves the highest average evaluation returns across five random seeds and
report the respective evaluation return. This indicates the maximum returns
achieved by the algorithm throughout training. To account for the sample ef-
ficiency, we also report the average returns achieved throughout all evaluations
during training. Lastly, we show learning curves of the average returns and the
95% confidence intervals across five seeds for each algorithm and task.

4.2.2 Parameter Sharing

In deep MARL algorithms, it is common practise to share parameters of the net-
works across agents (e.g., Rashid et al., 2020b; Foerster et al., 2018; Mahajan
et al., 2019). This reduces the number of parameters that need to be learned
and often improves learning efficiency, but can significantly change the learning
dynamics of the algorithm. To better understand the impact of parameter shar-
ing on MARL algorithms, we train and evaluate all considered MARL algorithms
in all tasks once with and once without parameter sharing. When sharing pa-
rameters across agents, the shared network receives a one-hot vector input that
encodes the identify of the agent as an additional input. This input allows the
network to learn specialised functions for each agent. The loss with parameter
sharing is averaged over all agents and a single update of the shared parameters
is performed for all agents. In the case of varying observation dimensions of mul-
tiple agents, inputs of agents with smaller input dimensions are zero-padded to
ensure identical input dimensionality. Similarly if agents have varying numbers

4.2. Evaluation 67

of actions, invalid actions are masked out.

4.2.3 Hyperparameter Optimisation

To ensure fair comparisons, we conduct a hyperparameter search for each algo-
rithm in one task of each environment. For each environment, we select one
representative task and optimise the hyperparameters of all algorithms in this
task. In the MPE environment, we perform the hyperparameter optimisation in
the speaker-listener task, in the SMAC environment in the “3s5z” task, in the
LBF environment in the “15x15-3p-5f” task, and in the RWARE environment in
the “Tiny 4p” task. We train each combination of hyperparameters using three
different seeds and compare the maximum evaluation returns. The best perform-
ing combination on each task is used for all tasks in the respective environment for
the final experiments. To consider the effect of parameter sharing on the training,
we also separately search for hyperparameters for each algorithm once with and
once without parameter sharing. We report the best identified hyperparameters
of each algorithm and environment in Appendix B.6. For IDQN, we compute
target values using double deep Q-networks (van Hasselt et al., 2016; van Hasselt,
2010).

4.2.4 Computational Requirements

All experiments presented in this chapter were executed purely on CPUs. The
experiments were executed in compute clusters that consist of several nodes. The
main types of CPU models that were used for this work are Intel(R) Xeon(R)
CPU E5-2630 v3 @ 2.40GHz and AMD EPYC 7502 32-Core processors. All
but the SMAC experiments were executed using a single CPU core. All SMAC
experiments were executed using 5 CPU cores. The total number of CPU hours
that were spent for executing the experiments in this chapter (excluding the
hyperparameter search) are 138,916, corresponding to almost 16 years of CPU
time.

4.2.5 Extended PyMARL

Implementation details in reinforcement learning significantly affect the returns
that each algorithm achieves (e.g., Andrychowicz et al., 2021; Fu et al., 2022b).

68 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

To enable consistent evaluation of MARL algorithms, we open-source the Ex-
tended PyMARL (EPyMARL) codebase. EPyMARL is an extension of the Py-
MARL codebase (Samvelyan et al., 2019) that already provides implementations
for IDQN, COMA, VDN and QMIX and is focused on the SMAC environment.
We increase the scope of the codebase to include five additional policy gradients
algorithms: IA2C, IPPO, MADDPG, MAA2C and MAPPO. Additionally, the
original PyMARL codebase implementation assumes that agents share parame-
ters and that all the agents’ observation have the same shape. Since parameter
sharing can act as an information bottleneck in environments with heterogeneous
agents (Christianos et al., 2021), EPyMARL allows training MARL algorithms
without parameter sharing, training agents with observations of varying dimen-
sionality, and tuning several implementation details such as reward standardisa-
tion, entropy regularisation, and the use of recurrent or fully-connected networks.
Lastly, EPyMARL integrates support for a diverse set of environments, including
all environments used in the evaluation of this work. Since its release, EPyMARL
has received wide attention in the research community, and has been built upon
in several works (e.g., Leroy et al., 2023; Torbati et al., 2023).

As part of this thesis, we further extended EPyMARL to include support for
training agents in general-sum environments with different reward functions. We
also integrated support to log training data to the Weights and Biases platform,
and updated the codebase alongside several environments (including LBF and
RWARE) to be compatible with the maintained Gymnasium library in replace-
ment of the deprecated OpenAI Gym library.

4.3 Results

In this section we compile the results across all environments and algorithms.
Figure 4.4 presents the normalised evaluation returns in all environments, except
matrix games. We normalise the returns of all algorithms in each task in the [0, 1]
range as follows:

norm(ut
a) = ut

a −mina′(ut
a′)

maxa′(ut
a′)−mina′(ut

a′)
(4.1)

where ut
a is the episodic return of algorithm a in task t.

Table 4.3 and Table 4.2 present the maximum and average returns for the nine
algorithms in all 25 tasks with parameter sharing, respectively. Maximum and av-

https://wandb.ai/
https://gymnasium.farama.org/index.html
https://www.gymlibrary.dev/index.html

4.3. Results 690

5

10

15

20

IDQN
IA2C

IPPO
MADDPG

COMA
MAA2C

MAPPO
VDN

QMIX

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0
No

rm
al

ise
d

Re
tu

rn
s

MPE

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

SMAC

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00

Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

LBF

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

RWARE

Figure 4.4: Normalised evaluation returns averaged over the tasks in the all environ-
ments except matrix games. Shadowed part represents the 95% confidence interval.

erage returns for all algorithms and tasks without parameter sharing can be found
in Table 4.5 and Table 4.4, respectively. For tables reporting maximum returns,
we highlight the highest performance in bold. Additionally, we performed two-
sided t-tests with a significance threshold of 0.05 between the highest performing
algorithm and each other algorithm in each task. If an algorithm’s performance
was not statistically significantly different from the best algorithm, the respective
value is annotated with an asterisk (i.e. bold or asterisks in the table show the
best performing algorithms per task). Learning curves with evaluation returns
of all algorithms in all 25 tasks are shown in Figure B.2. Following common
practice to report win-rates of algorithms as a percentage in SMAC tasks, we
additionally report final win-rates achieved by all algorithms in all SMAC tasks
in Appendix B.3. However, we found evaluation returns to be a more informative
metric since it is what all algorithms are optimised to maximise. We further note
that higher returns in SMAC do not always correspond to higher win-rates which

70 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

Table 4.2: Average returns and 95% confidence interval over five seeds for all nine
algorithms with parameter sharing in all 25 tasks.

Tasks \Algs. IDQN IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX

M
at

rix
G

am
es

Climbing 134.65± 0.63 169.34± 1.09 170.70± 1.77 156.45± 8.09 177.31± 49.52 167.89± 4.36 170.76± 1.79 125.50± 0.54 125.50± 0.54
Penalty k=0 245.64± 1.70 244.27± 1.13 247.44± 0.59 246.39± 0.45 245.63± 0.64 244.78± 0.87 247.69± 0.09 239.80± 2.93 243.76± 2.36
Penalty k=-25 44.65± 2.67 48.29± 0.30 48.44± 0.21 48.59± 0.05 48.33± 0.20 48.45± 0.12 48.46± 0.22 43.32± 5.98 45.99± 3.27
Penalty k=-50 39.70± 5.15 46.56± 0.57 46.79± 0.48 47.22± 0.17 46.61± 0.44 46.81± 0.28 46.82± 0.49 39.70± 9.63 42.28± 6.31
Penalty k=-75 34.75± 7.62 44.82± 0.84 45.15± 0.75 45.83± 0.28 44.88± 0.68 45.16± 0.43 45.19± 0.76 34.75± 14.26 38.56± 9.34
Penalty k=-100 29.80± 10.10 43.08± 1.13 43.50± 1.02 44.42± 0.36 43.15± 0.93 43.51± 0.59 43.55± 1.04 29.80± 18.89 34.85± 12.37

M
PE

Speaker-Listener −27.64± 3.90 −17.61± 2.99 −17.42± 3.23 −18.46± 0.68 −38.20± 6.29 −15.17± 0.44 −15.01± 0.64 −27.41± 3.11 −21.29± 2.79
Spread −155.81± 1.50−152.72± 0.96−149.89± 2.91−157.10± 2.30−245.22± 84.46−144.73± 4.09−149.26± 0.94−148.57± 1.67−154.70± 4.90
Adversary 7.58± 0.14 10.18± 0.05 10.21± 0.16 7.80± 1.43 6.12± 0.35 10.11± 0.14 9.61± 0.07 7.64± 0.21 8.11± 0.37
Tag 13.70± 1.97 12.43± 1.05 13.60± 2.95 6.65± 3.90 5.11± 0.58 11.93± 2.09 13.78± 4.40 15.24± 1.59 15.00± 2.73

SM
A

C

2s_vs_1sc 14.76± 0.45 19.74± 0.02 19.44± 0.29 10.15± 1.32 9.04± 0.83 17.89± 0.85 19.67± 0.09 16.11± 0.23 15.98± 0.77
3s5z 14.09± 0.28 14.84± 1.29 11.80± 1.51 8.60± 2.35 15.51± 0.98 18.82± 0.14 19.09± 0.38 17.85± 0.25 18.36± 0.07
corridor 10.91± 0.82 13.14± 1.24 14.60± 3.43 5.15± 0.25 7.00± 0.15 7.89± 0.28 13.20± 2.98 11.14± 1.66 11.67± 1.88
MMM2 10.11± 0.32 7.31± 1.89 9.97± 1.33 3.42± 0.05 6.50± 0.17 9.07± 1.35 15.39± 0.16 15.93± 0.23 15.63± 0.32
3s_vs_5z 17.35± 0.23 4.32± 0.04 13.38± 4.36 5.34± 0.47 1.15± 1.35 6.17± 0.39 13.09± 2.63 14.72± 4.01 9.68± 1.87

LB
F

8x8-2p-2f-c 0.75± 0.04 0.97 0.94± 0.02 0.32± 0.02 0.32± 0.12 0.97 0.95± 0.01 0.64± 0.09 0.39± 0.10
8x8-2p-2f-2s-c 0.86± 0.01 0.97 0.50± 0.01 0.54± 0.05 0.24± 0.08 0.97 0.77± 0.02 0.83± 0.01 0.77± 0.03
10x10-3p-3f 0.54± 0.02 0.95± 0.01 0.90± 0.02 0.20± 0.06 0.15± 0.05 0.95± 0.01 0.91± 0.01 0.40± 0.05 0.32± 0.07
10x10-3p-3f-2s 0.69± 0.02 0.84± 0.01 0.62± 0.01 0.27± 0.02 0.23± 0.06 0.85± 0.02 0.66± 0.01 0.64± 0.02 0.67± 0.01
15x15-3p-5f 0.09± 0.02 0.61± 0.06 0.41± 0.09 0.08 0.06± 0.03 0.59± 0.09 0.43± 0.09 0.08± 0.01 0.04± 0.01
15x15-4p-3f 0.24± 0.05 0.89± 0.03 0.82± 0.06 0.13± 0.01 0.12± 0.03 0.92± 0.01 0.79± 0.03 0.16± 0.03 0.08± 0.01
15x15-4p-5f 0.15± 0.03 0.59± 0.06 0.40± 0.13 0.13± 0.01 0.07± 0.02 0.73± 0.02 0.39± 0.14 0.15± 0.02 0.09± 0.02

RW
A

R
E Tiny 2p 0.04± 0.03 2.91± 0.45 12.63± 1.38 0.11± 0.07 0.13± 0.05 3.20± 0.41 15.42± 1.20 0.03± 0.01 0.03± 0.03

Tiny 4p 0.33± 0.13 10.30± 0.93 22.68± 7.40 0.28± 0.03 0.39± 0.06 14.39± 4.01 40.17± 1.42 0.29± 0.13 0.10± 0.09
Small 4p 0.03± 0.04 2.45± 0.18 9.19± 2.36 0.06± 0.02 0.08± 0.01 3.48± 0.42 18.12± 1.11 0.02± 0.03 0.01± 0.01

can make the interpretation of win-rate metrics more difficult.

4.3.1 Independent Learning

We find that IL algorithms perform adequately in all tasks despite their simplicity.
However, performance of IL is limited in partially observable SMAC and RWARE
tasks, compared to their CTDE counterparts, due to IL algorithms’ inability to
reason over joint information of agents.

IDQN IDQN performs significantly worse than the other IL algorithms in
the partially observable speaker-listener task and in all RWARE tasks. IDQN
is particularly effective in all but three LBF tasks, where relatively larger grid-
worlds are used. IDQN achieves the best performance among all algorithms in
the “3s_vs_5z” task, while it performs competitively in the rest of the SMAC
tasks.

IA2C: The stochastic policy of IA2C appears to be particularly effective on all

4.3. Results 71

Table 4.3: Maximum returns and 95% confidence interval over five seeds for all nine
algorithms with parameter sharing in all 25 tasks. The highest value in each task is
presented in bold. Asterisks denote the algorithms that are not significantly different
from the best performing algorithm in each task.

Tasks \Algs. IDQN IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX

M
at

rix
G

am
es

Climbing 195.00 ± 67.82 175.00 175.00 170.00± 10.00 185.00± 48.99 175.00 175.00 175.00± 54.77 175.00± 54.77
Penalty k=0 250.00 250.00 250.00 249.98± 0.04 250.00 250.00 250.00 250.00 250.00
Penalty k=-25 50.00 50.00 50.00 49.97± 0.02 50.00 50.00 50.00 50.00 50.00
Penalty k=-50 50.00 50.00 50.00 49.98± 0.02 50.00 50.00 50.00 50.00 50.00
Penalty k=-75 50.00 50.00 50.00 49.97± 0.02 50.00 50.00 50.00 50.00 50.00
Penalty k=-100 50.00 50.00 50.00 49.97± 0.03 50.00 50.00 50.00 50.00 50.00

M
PE

Speaker-listener −18.36± 4.67 −12.60± 3.62* −13.10± 3.50 −13.56± 1.73 −30.40± 5.18 −10.71± 0.38* −10.68 ± 0.30 −15.95± 2.48 −11.56± 0.53
Spread −132.63± 2.22 −134.43± 1.15 −133.86± 3.67 −141.70± 1.74 −204.31± 6.30 −129.90± 1.63* −133.54± 3.08 −131.03± 1.85 −126.62 ± 2.96
Adversary 9.38± 0.91 12.12± 0.44* 12.17 ± 0.32 8.97± 0.89 8.05± 0.89 12.06± 0.45* 11.30± 0.38 9.28± 0.90 9.67± 0.66
Predator-prey 22.18± 2.83 17.44± 1.31 19.44± 2.94 12.50± 6.30 8.72± 4.42 19.95± 7.15* 18.52± 5.64 24.50± 2.19 31.18 ± 3.81

SM
A

C

2s_vs_1sc 16.72± 0.38 20.24 20.24± 0.01 13.14± 2.01 11.04± 7.21 20.20± 0.05* 20.25 18.04± 0.33 19.01± 0.40
3s5z 16.44± 0.15 18.56± 1.31* 13.36± 2.08 12.04± 0.82 18.90± 1.01* 19.95± 0.05* 20.39 ± 1.14 19.57± 0.20* 19.66± 0.14*
corridor 15.72± 1.77 18.59 ± 0.62 17.97± 3.44* 5.85± 0.58 7.75± 0.19 8.97± 0.29 17.14± 4.39* 15.25± 4.18* 16.45± 3.54*
MMM2 13.69± 1.02 10.70± 2.77 11.37± 1.15 3.96± 0.32 6.95± 0.27 10.37± 1.95 17.78± 0.44 18.49 ± 0.31 18.40± 0.24*
3s_vs_5z 21.15 ± 0.41 4.42± 0.02 19.36± 6.15* 5.99± 0.58 3.23± 0.05 6.68± 0.55 18.17± 4.17* 19.03± 5.77* 16.04± 2.87

LB
F

8x8-2p-2f-c 1.00 1.00 1.00 0.46± 0.02 0.61± 0.30 1.00 1.00 1.00 0.96± 0.07*
8x8-2p-2f-2s-c 1.00 1.00 0.78± 0.05 0.70± 0.04 0.45± 0.15 1.00 0.85± 0.06 1.00 1.00
10x10-3p-3f 0.93± 0.02 1.00 0.98± 0.01 0.24± 0.04 0.19± 0.06 1.00 0.99± 0.01 0.84± 0.08 0.84± 0.08
10x10-3p-3f-2s 0.86± 0.01 0.94± 0.03* 0.70± 0.03 0.41± 0.03 0.29± 0.12 0.96 ± 0.02 0.72± 0.03 0.90± 0.03 0.90± 0.01
15x15-3p-5f 0.17± 0.08 0.89 ± 0.04 0.77± 0.08 0.10± 0.02 0.08± 0.04 0.87± 0.06* 0.77± 0.02 0.15± 0.02 0.09± 0.04
15x15-4p-3f 0.54± 0.18 0.99± 0.01* 0.98± 0.01 0.17± 0.03 0.17± 0.04 1.00 0.96± 0.02 0.38± 0.13 0.15± 0.06
15x15-4p-5f 0.22± 0.04 0.93± 0.03* 0.67± 0.22 0.12± 0.06 0.12± 0.06 0.95 ± 0.01 0.70± 0.25* 0.30± 0.04 0.25± 0.09

RW
A

R
E Tiny 4p 0.72± 0.37 26.34± 4.60 31.82± 10.71 0.54± 0.10 1.16± 0.15 32.50± 9.79 49.42 ± 1.22 0.80± 0.28 0.30± 0.19

Small 4p 0.14± 0.28 6.54± 1.15 19.78± 3.12 0.18± 0.12 0.16± 0.16 10.30± 1.48 27.00 ± 1.80 0.18± 0.27 0.06± 0.08
Tiny 2p 0.28± 0.38 8.18± 1.25 20.22± 1.76* 0.44± 0.34 0.48± 0.34 8.38± 2.59 21.16 ± 1.50 0.12± 0.07 0.14± 0.19

environments except in a few SMAC tasks. In the majority of tasks, it performs
similarly to IPPO with the exception of RWARE and some SMAC tasks. However,
it achieves higher returns than IDQN in all but two SMAC tasks. Despite its
simplicity, IA2C performs competitively compared to all CTDE algorithms, and
significantly outperforms COMA and MADDPG in the majority of the tasks.

IPPO: IPPO in general performs competitively in all tasks across the different
environments. On average (Figure 4.4) it achieves higher returns than IA2C in
MPE, SMAC and RWARE tasks, but lower returns in the LBF tasks. IPPO also
outperforms MAA2C in the partially observable RWARE tasks, but in general it
performs worse compared to its centralised MAPPO version.

4.3.2 Centralised Training Decentralised Execution

Centralised training aims to learn powerful critics over joint observations and
actions to enable reasoning over a larger information space. We find that learn-
ing such critics is valuable in tasks that require significant coordination under
partial observability, such as the MPE speaker-listener and harder SMAC tasks.
In contrast, IL is competitive compared to CTDE algorithms in fully-observable

72 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

Table 4.4: Average returns and 95% confidence interval over five seeds for all nine
algorithms without parameter sharing in all 25 tasks.

Tasks \Algs. IDQN IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX

M
at

rix
G

am
es

Climbing 130.20± 4.37 164.72± 0.69 171.68± 0.41 150.05± 3.75 187.50± 41.19 169.43± 1.01 171.62± 0.39 132.52± 3.20 132.43± 3.37
Penalty k=0 246.73± 1.39 243.65± 0.93 247.72± 0.04 247.88± 0.05 247.10± 0.38 246.61± 0.52 247.73± 0.03 247.03± 1.85 247.03± 0.99
Penalty k=-25 49.70± 0.24 46.95± 0.16 88.05± 79.01 86.14± 75.19 48.32± 0.10 125.90± 95.14 88.06± 79.03 50.00± 0.99 50.00± 0.99
Penalty k=-50 49.70± 0.24 44.31± 0.34 46.99± 0.23 47.12± 0.07 46.54± 0.20 46.56± 0.33 46.99± 0.24 50.00± 0.99 50.00± 0.99
Penalty k=-76 49.70± 0.24 41.64± 0.50 45.44± 0.36 45.74± 0.12 44.77± 0.31 44.88± 0.47 45.44± 0.37 50.00± 0.99 50.00± 0.99
Penalty k=-100 49.70± 0.24 38.94± 0.66 43.89± 0.48 44.33± 0.16 42.99± 0.41 43.21± 0.62 43.90± 0.52 50.00± 0.99 50.00± 0.99

M
PE

Speaker-Listener −30.49± 4.67 −23.33± 2.67 −22.78± 3.10 −17.79± 0.97 −33.88± 3.38 −19.48± 2.92 −20.51± 2.85 −29.49± 2.36 −20.31± 1.84
Spread −160.10± 1.59−141.31± 3.86−142.86± 4.49−149.53± 2.41−184.72± 2.99−139.54± 4.78−139.20± 4.58−158.60± 2.06−157.04± 1.38
Adversary 7.82± 0.19 9.18± 1.52 9.46± 1.02 7.24± 2.13 7.28± 0.76 9.43± 1.93 10.20± 0.24 8.06± 0.27 8.81± 0.52
Tag 12.59± 1.60 9.59± 4.30 11.90± 3.31 1.91± 2.09 14.28± 5.43 11.79± 5.40 10.90± 5.47 10.71± 0.69 14.27± 2.81

SM
A

C

2s_vs_1sc 13.37± 0.35 19.69± 0.05 8.59± 1.90 7.91± 0.16 15.32± 3.21 16.22± 3.75 19.68± 0.08 15.12± 0.46 15.66± 0.82
3s5z 14.23± 0.84 12.65± 1.00 12.26± 0.98 7.65± 0.54 17.13± 1.11 17.94± 0.28 19.03± 0.19 17.06± 0.28 15.46± 0.59
MMM2 8.27± 0.64 6.98± 1.72 6.23± 0.88 3.11± 0.12 3.82± 0.36 9.85± 0.19 9.41± 0.19 12.72± 0.56 8.05± 2.05
corridor 8.38± 0.82 9.81± 1.98 7.80± 0.68 4.99± 0.17 7.85± 0.46 7.78± 0.73 8.18± 0.43 9.25± 0.85 10.76± 1.79
3s_vs_5z 9.15± 0.46 4.26± 0.02 4.20± 0.22 3.53± 0.39 3.20± 0.89 4.91± 0.41 4.55± 0.02 10.85± 1.61 10.09± 1.10

LB
F

8x8-2p-2f-c 0.95± 0.02 0.96± 0.01 0.91± 0.02 0.40± 0.05 0.63± 0.13 0.97 0.93± 0.02 0.93 0.90
8x8-2p-2f-2s-c 0.97 0.96 0.50 0.52± 0.02 0.63± 0.08 0.97 0.79± 0.03 0.96 0.96
10x10-3p-3f 0.77± 0.05 0.92± 0.01 0.85± 0.01 0.15 0.24± 0.03 0.92± 0.01 0.85± 0.02 0.80± 0.03 0.81± 0.04
10x10-3p-3f-2s 0.78± 0.02 0.76± 0.01 0.61± 0.01 0.22± 0.03 0.23± 0.05 0.80 0.62 0.86± 0.02 0.86± 0.02
15x15-3p-5f 0.11± 0.02 0.39± 0.09 0.33± 0.13 0.07 0.06 0.40± 0.03 0.24± 0.09 0.18± 0.01 0.08± 0.03
15x15-4p-3f 0.29± 0.04 0.81± 0.01 0.60± 0.01 0.10± 0.01 0.16± 0.03 0.74± 0.03 0.65± 0.06 0.55± 0.06 0.12± 0.04
15x15-4p-5f 0.17± 0.03 0.49± 0.10 0.40± 0.11 0.11 0.09± 0.01 0.44± 0.03 0.25± 0.04 0.25± 0.01 0.11± 0.02

RW
A

R
E Tiny 2p 0.01± 0.01 2.02± 0.68 5.36± 3.05 0.07± 0.05 0.37± 0.04 2.23± 0.45 10.39± 3.04 0.01± 0.01 0.01± 0.01

Tiny 4p 0.13± 0.04 6.10± 1.38 9.24± 4.20 0.25± 0.04 0.50± 0.12 10.73± 1.31 25.14± 1.44 0.10± 0.02 0.05± 0.02
Small 4p 0.01 1.02± 0.10 3.64± 0.38 0.03± 0.02 0.07± 0.02 1.27± 0.09 7.06± 0.63 0.01± 0.01 0.01± 0.01

tasks of MPE and LBF. Our results also indicate that in most RWARE tasks,
MAA2C and MAPPO significantly improve the achieved returns compared to
their IL (IA2C and IPPO) versions. However, training state-action value func-
tions appears challenging in RWARE tasks with sparse rewards, leading to very
low performance of the remaining CTDE algorithms (MADDPG, COMA, VDN,
and QMIX).

Centralised Multi-Agent Policy Gradient Centralised policy gradient methods
vary significantly in performance.

MADDPG: MADDPG performs worse than all the other algorithms except
COMA, in the majority of the tasks. It only performs competitively in some MPE
tasks. It also exhibits very low returns in discrete grid-world environments LBF
and RWARE. We believe that these results are a direct consequence of the biased
categorical reparameterisation using gumbel-softmax (Jang et al., 2017). Recent

4.3. Results 73

Table 4.5: Maximum returns and 95% confidence interval over five seeds for all nine
algorithms without parameter sharing in all 25 tasks.

Tasks \Algs. IDQN IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
M

at
rix

G
am

es

Climbing 150.00 175.00 175.00 170.00± 10.00 195.00± 40.00 175.00 175.00 150.00 155.00± 10.00
Penalty k=0 250.00 250.00 250.00 249.94± 0.08 250.00 250.00 250.00 250.00 250.00
Penalty k=-25 50.00 50.00 90.00± 80.00 89.99± 80.01 50.00 130.00± 97.98 90.00± 80.00 50.00±100.00 50.00±100.00
Penalty k=-50 50.00 50.00 50.00 49.98± 0.01 50.00 50.00 50.00 50.00±100.00 50.00±100.00
Penalty k=-75 50.00 50.00 50.00 49.98± 0.01 50.00 50.00 50.00 50.00±100.00 50.00±100.00
Penalty k=-100 50.00 50.00 50.00 49.98± 0.01 50.00 50.00 50.00 50.00±100.00 50.00±100.00

M
PE

Speaker-Listener −18.61± 5.65 −17.08± 3.45 −15.56± 4.40* −12.73± 0.73*−26.50± 0.50 −13.66± 3.67* −14.35± 3.56* −15.47± 1.26 −11.59 ± 0.67
Spread −141.87± 1.68 −131.74± 4.33* −132.46± 3.54*−136.73± 0.83−169.04± 2.72 −130.88± 2.44*−128.64 ± 2.83 −142.13± 1.86 −130.97± 2.51*
Adversary 9.09± 0.52 10.80± 1.97* 11.17± 0.85* 8.81± 0.61 9.18± 0.43 10.88± 2.43* 12.04 ± 0.53 9.34± 0.57 11.32± 0.78*
Tag 19.18± 2.30 16.04± 8.08* 18.46± 5.19* 2.82± 3.56 19.14± 7.50* 26.50± 1.42* 17.96± 8.82* 18.44± 2.51 26.88 ± 5.61

SM
A

C

2s_vs_1sc 15.73± 1.08 20.23± 0.01 20.15± 0.10* 10.35± 2.20 18.48± 3.28* 19.88± 0.38* 20.25 ± 0.01 17.22± 0.90 18.83± 0.47
3s5z 16.85± 1.43 14.44± 2.08 14.77± 2.51 15.05± 0.81 19.55± 0.45* 19.38± 0.30 19.77 ± 0.11 19.08± 0.29 18.40± 0.70
MMM2 10.86± 1.04 8.38± 2.90 7.35± 0.48 4.92± 0.10 4.98± 0.42 10.79± 0.34 10.02± 0.19 16.20 ± 0.44 12.27± 2.28
corridor 11.06± 1.36 13.11± 4.27* 10.29± 4.60 6.57± 0.53 8.34± 0.81 9.26± 3.08 8.51± 0.76 11.42± 2.18* 15.12 ± 3.42
3s_vs_5z 11.80± 1.05* 4.41± 0.02 4.26± 0.24 6.21± 1.97 4.13± 0.05 5.39± 0.74 4.62± 0.11 14.42± 2.22* 15.13 ± 3.86

LB
F

8x8-2p-2f-c 1.00 1.00 1.00 0.43± 0.02 0.95± 0.07* 1.00 1.00 0.99± 0.01* 0.57± 0.15
8x8-2p-2f-2s-c 0.99± 0.01* 1.00 0.83± 0.03 0.66± 0.04 0.92± 0.02 1.00 0.92± 0.05 0.99± 0.01* 0.98± 0.01
10x10-3p-3f 0.54± 0.12 1.00 ± 0.01 0.96± 0.01 0.20± 0.03 0.31± 0.08 0.99± 0.01* 0.98± 0.01 0.39± 0.06 0.22± 0.03
10x10-3p-3f-2s 0.77± 0.06 0.89± 0.02 0.72± 0.02 0.29± 0.02 0.27± 0.09 0.96 ± 0.01 0.70± 0.04 0.76± 0.04 0.78± 0.05
15x15-3p-5f 0.11± 0.02 0.74 ± 0.12 0.62± 0.12* 0.10± 0.01 0.09± 0.02 0.72± 0.05* 0.49± 0.19* 0.11± 0.01 0.06± 0.01
15x15-4p-3f 0.16± 0.03 0.99 0.90± 0.01 0.17± 0.01 0.21± 0.07 0.94± 0.05* 0.89± 0.02 0.13± 0.02 0.10± 0.01
15x15-4p-5f 0.17 0.77 ± 0.10 0.69± 0.05* 0.15± 0.01 0.14± 0.03 0.76± 0.04* 0.45± 0.17 0.14± 0.01 0.08± 0.01

RW
A

R
E Tiny 2p 0.06± 0.08 5.56± 1.68 8.70± 4.04 0.24± 0.21 1.46± 0.34 6.16± 1.94 17.48 ± 4.52 0.06± 0.08 0.06± 0.08

Tiny 4p 0.44± 0.10 18.02± 5.87 14.10± 5.20 0.44± 0.24 1.48± 0.48 31.56± 4.29 38.74 ± 2.99 0.34± 0.17 0.16± 0.15
Small 4p 0.04± 0.05 3.10± 0.68 5.78± 0.42 0.16± 0.12 0.16± 0.10 5.00± 0.68 13.78 ± 1.63 0.04± 0.05 0.06± 0.08

work confirmed this hypothesis and showed that alternative reparameterisation
techniques can improve the performance of the MADDPG algorithm by reducing
its bias (Tilbury et al., 2023).

COMA: In general, COMA exhibits one of the lowest performances in most
tasks and only performs competitively in one SMAC task. We found that COMA
suffers very high variance in the computation of the counterfactual advantage. In
the speaker-listener task, it fails to find the sub-optimal local minima solution
that correspond to returns around to -17. Additionally, it does not exhibit any
learning in the RWARE tasks in contrast to other on-policy algorithms.

MAA2C: MAA2C in general performs competitively in the majority of the
tasks, except a couple of SMAC tasks. Compared to MAPPO, MAA2C achieves
slightly higher returns in the MPE and the LBF tasks, but in most cases signifi-
cantly lower returns in the SMAC and RWARE tasks.

MAPPO: MAPPO achieves high returns in the vast majority of tasks and
only performs slightly worse than other algorithms in some MPE and LBF tasks.

74 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

Its main advantage is the combination of on-policy optimisation with its surrogate
objective that significantly improves the sample efficiency compared to MAA2C.
Its benefits can be observed in RWARE tasks where its returns exceed the returns
of all other algorithms, even if not always by statistically significant margins.

Value Decomposition Value decomposition is an effective approach in most
environments. In the majority of tasks across all environments except RWARE,
VDN and QMIX outperform or at least match the highest returns of any other
algorithm. This suggests that VDN and QMIX share the major advantages of
centralised training also seen in MAA2C and MAPPO. In RWARE, VDN and
QMIX do not exhibit any learning, similar to IDQN, COMA and MADDPG,
indicating that value decomposition methods require sufficiently dense rewards
to successfully learn to decompose the value function into the individual agents.

VDN: While VDN and QMIX perform similarly in most environments, the
difference in performance is most noticeable in some MPE tasks. It appears
VDN’s assumption of linear value function decomposition is mostly violated in
this environment. In contrast, VDN and QMIX perform similarly in most SMAC
tasks and across all LBF tasks, where it seems that the global utility can be
sufficiently accurately represented by a linear decomposition into agent utilities.

QMIX: Across almost all tasks, QMIX achieves consistently high returns, but
does not necessarily achieve the highest returns among all algorithms. Its value
function decomposition allows QMIX to achieve slightly higher returns in some
of the more complicated tasks where the linear value decomposition of VDN in
appears insufficient.

4.3.3 Parameter Sharing

Figure 4.5 presents the normalised maximum returns averaged over the nine al-
gorithms and tasks with and without parameter sharing in all environments. We
observe that in all environments except the matrix games, parameter sharing im-
proves the returns over no parameter sharing. While the average values presented
in Figure 4.5 do not seem statistically significant, by looking closer in Tables 4.3
and 4.5 we observe that in several cases of algorithm-task pairs the improvement
due to parameter sharing seems significant. Such improvements can be observed
for most algorithms in MPE tasks, especially in speaker-listener and predator-
prey. For SMAC, we observe that parameter sharing improves the returns in

4.4. Analysis 75

Matrix Games MPE SMAC LBF RWARE
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

No
rm

al
ise

d
Re

tu
rn

s

Parameter Sharing
No Parameter Sharing

Figure 4.5: Normalised maximum returns averaged over all algorithms with/without
parameter sharing (with standard error).

harder tasks. Similar observations can be made for LBF and RWARE. In these
environments, the return improvement of parameter sharing appears to correlate
with the sparsity of rewards. For tasks with larger grid-worlds or fewer agents,
where the reward is more sparse, parameter sharing leads to large increases in
returns compared to simpler tasks. These results indicate that parameter shar-
ing constitutes a trade-off between improving sample efficiency and limiting the
expressiveness of the individual agents’ policies. By sharing parameters, the tra-
jectories of all agents are used to train the same network which improves sample
efficiency. However, using the same network for all agents also limits their ability
to learn specialised policies that might be beneficial in some tasks. Overall, the
results suggest that parameter sharing is beneficial in many environments, likely
indicating that these environments require agents to learn similar or identical
policies, or that without parameter sharing the sample efficiency is too low to
learn effective policies within the training budget.

4.4 Analysis

Independent learning can be effective in multi-agent systems. Why and
when? It is often stated that IL is inferior to centralised training methods due to
the environment becoming non-stationary from the perspective of any individual
agent. This is true in many cases and particularly crucial when IL is paired with
off-policy training from an experience replay buffer, as pointed out by Lowe et al.

76 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

(2017). In our experiments, IDQN trains agents independently using such a replay
buffer and is thereby limited in its performance in tasks that require extensive
coordination among the agents. There, agents depend on the information about
other agents and their current behaviour to choose well-coordinated actions and
hence learning such policies from a replay buffer (where other agents differ in their
behaviour) appears infeasible. However, this is not a general concern in multi-
agent environments. In smaller SMAC tasks and most LBF tasks, each agent
can independently learn a policy that achieves relatively high returns by utilising
only its local observation history, and without requiring extensive coordination
with other agents. For example in LBF, agents “only” need to learn to move to
and pick up food. Of course, they will have to coordinate such behaviour with
other agents, but naively going to food (especially when others are also close)
and attempting to pick it up can be a viable local optima policy, and hard to
improve upon. Whenever more complicated coordination is required, such as
simultaneously picking up an item with higher level, exploring and learning those
joint actions becomes difficult. IA2C and IPPO on the other hand learn policies
from on-policy trajectories, so the behaviour of other agents observed within the
trajectories represents the current policies of other agents. It appears that such
on-policy training can improve the stability of the learning process despite the
remaining non-stationarity of the policies of other agents. Recent work further
supports this hypothesis by showing that off-policy DRL algorithms can be more
effectively and stably trained from on-policy trajectories compared to training
from off-policy trajectories sampled from a replay buffer (Gallici et al., 2024).

Centralised information can improve coordination under partial-observability.
We note that the availability of joint observations and actions over all agents
serves as a powerful training signal to optimise individual policies whenever the
full state is not available to individual agents. Comparing the performance in
Table 4.3 of IA2C and MAA2C, two almost identical algorithms aside from their
critics, we notice that MAA2C achieves equal or higher returns in the major-
ity of the tasks. This difference is particularly significant in tasks where agent
observations lack important information about other agents or parts of the en-
vironment outside of their receptive field due to partial observability. This can
be observed in RWARE tasks with 4 agents that requires extensive coordination
so that agents are not stuck in the narrow passages. However, in RWARE Tiny

4.5. Conclusion 77

2p task, the performance of IA2C and MAA2C is similar as only two agents
rarely get stuck in the narrow passages. Finally, IA2C and MAA2C have access
to the same information in fully-observable tasks, such as most LBF and MPE
tasks, leading to similar returns. A similar pattern can be observed for IPPO and
MAPPO. However, we also observe that centralised training algorithms such as
COMA, MADDPG, VDN, and QMIX are unable to learn effective behaviour in
the partially observable RWARE. We hypothesise that training larger networks
over the joint observation- and action-space, as required for these algorithms, de-
mands sufficiently dense rewards. However, rewards are sparse in RWARE and
observations are comparably large which makes learning centralised action-value
functions difficult.

Value decomposition – VDN vs QMIX. Lastly, we discuss the differences ob-
served in value decomposition applied by VDN and QMIX. Such decomposition
offers significant improvements in comparison to the otherwise similar IDQN algo-
rithm across most tasks. As detailed in Section 2.6.2.1, VDN and QMIX differ in
their decomposition of the centralised action-value function with VDN assuming
a linear decomposition while QMIX uses a more expressive monotonic decom-
position. With the additional flexibility of its decomposition, QMIX aims to
improve learnability, i.e. it simplifies the learning objective for each agent to max-
imise, while ensuring the global objective is maximised by all agents (Agogino and
Tumer, 2008). Such flexibility appears to mostly benefit convergence in harder
MPE tasks, such as speaker-listener and predator-prey, but comes at additional
expense seen in environments like LBF, where the decomposition did not have to
be complex. It appears that the dependency of rewards with respect to compli-
cated interactions between agents in MPE tasks benefits from the more complex
decomposition of QMIX. Finally, VDN and QMIX perform significantly worse
than the policy gradient methods (except COMA) in the sparse-reward RWARE
tasks. This does not come as a surprise, since the utility of the agents is rarely
greater than 0, which makes it hard to successfully learn the individual utilities.

4.5 Conclusion

We evaluated nine MARL algorithms in a total of 25 cooperative learning tasks,
including combinations of partial and full observability, sparse and dense rewards,

78 Chapter 4. Benchmarking Multi-Agent Reinforcement Learning

and a number of agents ranging from two to ten. We compared algorithm per-
formance in terms of maximum and average returns. Additionally, we further
analysed the effectiveness of independent learning, centralised training, and value
decomposition and identified types of environments in which each strategy is ex-
pected to perform well. We furthermore identified that many MARL algorithms,
in particular value-based MARL algorithms, are comparably ineffective in tasks
with highly sparse rewards such as RWARE. We also found that parameter shar-
ing can improve the performance of MARL algorithms in most tasks. To provide
additional value to the MARL research community, we created EPyMARL as an
open-source codebase for consistent evaluation of MARL algorithms in coopera-
tive tasks, and provided LBF and RWARE as two new open-source multi-agent
environments with sparse rewards. Our work is limited to cooperative environ-
ments and commonly-used MARL algorithms. Competitive environments as well
as solutions to a variety of MARL challenges such as exploration, communication,
and opponent modelling require additional studies in the future.

Chapter 5

Experience Sharing for Multi-Agent
Reinforcement Learning

Publication
This chapter is based on and adapted from the following publication:

Filippos Christianos, Lukas Schäfer, and Stefano V. Albrecht. “Shared
experience actor-critic for multi-agent reinforcement learning.” In Advances
in Neural Information Processing Systems. 2020.

Figure 5.1: Two randomly-placed
agents (triangles) must simultane-
ously arrive at the goal (square).

As we have seen in the previous chap-
ter, many MARL algorithms still struggle to
learn efficient policies in environments with
sparse rewards such as multi-robot warehouse
(RWARE) and level-based foraging (LBF). In
this chapter, we focus on this challenge of
MARL in environments with sparse rewards,
and study it under the more general POSG for-
malism (Section 2.4). Motivated by the obser-
vation that many environments require agents
to learn similar but not identical policies, we
propose a new algorithm for efficient MARL exploration based on the idea of
agents sharing experience with each other.

Consider the simple multi-agent game shown in Figure 5.1 in which two agents
must simultaneously arrive at a goal. This game presents a difficult exploration

79

80 Chapter 5. Experience Sharing for Multi-Agent Reinforcement Learning

problem, requiring the agents to wander for a long period before stumbling upon
a reward. When the agents finally succeed, the idea of sharing experience is
appealing: both agents can learn how to approach the goal from two different
directions after a successful episode by leveraging their collective experience. Such
experience sharing facilitates a steady progression of all learning agents, meaning
that agents improve at approximately equal rates as opposed to diverging in their
learning progress. We show in our experiments that this approach of experience
sharing can lead to significantly faster learning and higher final returns.

We demonstrate this idea in a novel actor-critic MARL algorithm, called
shared experience actor-critic (SEAC).1 SEAC operates similarly to independent
learning (Tan, 1993) but updates the actor and critic parameters of an agent by
combining gradients computed on the agent’s experience with weighted gradients
computed on other agents’ experiences. We evaluate SEAC in ten sparse-reward
multi-agent tasks across four environments and find that it learns substantially
faster (up to 70% fewer required training steps) and achieves higher final returns
compared to several baselines, including: independent learning without experi-
ence sharing; using data from all agents to train a single shared policy; and
MADDPG (Lowe et al., 2017), QMIX (Rashid et al., 2020b), and ROMA (Wang
et al., 2020a). Lastly, we show that SEAC only neglectably increases the compu-
tation cost of training, increasing training time per time steps by less than 3%
across all environments compared to independent learning, despite significantly
improving sample efficiency.

5.1 Shared Experience Actor-Critic

Our goal is to enable more efficient learning by sharing experience among agents.
To facilitate experience sharing, we assume environments in which the local policy
gradients of agents provide useful learning directions for all agents. Intuitively,
this means that agents can learn from the experiences of other agents without
necessarily having identical reward functions. We formalise this assumption in
Section 5.2 and provide examples of environments that fulfil this property in
Section 5.3.

In each episode, each agent generates one on-policy trajectory. Usually, when
training agents with an on-policy RL algorithm, each agent is training its networks

1We provide open-source implementations of SEAC in www.github.com/uoe-agents/seac.

www.github.com/uoe-agents/seac

5.1. Shared Experience Actor-Critic 81

using only its own observations, actions, and rewards. Here, we propose to also
use such trajectories of other agents while considering that it is off-policy data,
i.e. the trajectories are generated by agents executing different policies than the
one optimised. One possibility to use such off-policy samples is to correct the
difference in data distribution using importance sampling weights. The policy
loss for a single-agent advantage actor-critic algorithm (Section 2.3.3) using such
off-policy experience from a behavioural policy can be written as:

L(ϕ) = Eat∼β(ht)

[
−π(at | ht;ϕ)

β(at | ht)
log π(at | ht;ϕ)

(
rt + γV (ht+1; θ)− V (ht; θ)

)]
(5.1)

with β denoting the behavioural policy that collected the experience, π with
parameters ϕ denoting the target policy we update, and V denoting a state value
function with parameters θ.

We now combine the on-policy advantage actor-critic policy loss for a inde-
pendent learning multi-agent algorithm with the off-policy policy loss using the
experience of all the other agents. We show the loss for agent i and denote the
indices of all other agents with k ∈ I \ {i}:

L(ϕi) = E at
i∼π(ht

i;ϕi)
at

k∼π(ht
k;ϕk)

[
− log π(at

i | ht
i;ϕi)

(
rt

i + γV (ht+1
i ; θi)− V (ht

i; θi)
)

−λ
∑

k∈I\{i}

π(at
k | ht

k;ϕi)
π(at

k | ht
k;ϕk)

log π(at
k | ht

k;ϕi)
(
rt

k + γV (ht+1
k ; θi)− V (ht

k; θi)
) (5.2)

Using this loss function, each agent is trained on both on-policy data sampled
from its own policy and the off-policy data collected by all other agents at each
training step. The value loss can leverage the experience of other agents in a
similar fashion:

L(θi) = E at
i∼π(ht

i;ϕi)
at

k∼π(ht
k;ϕk)

[(
rt

i + γV (ht+1
i ; θi)− V (ht

i; θi)
)2

+λ
∑

k∈I\{i}

π(at
k | ht

k;ϕi)
π(at

k | ht
k;ϕk)

(
rt

k + γV (ht+1
k ; θi)− V (ht

k; θi)
)2
 (5.3)

The hyperparameter λ in Equation 5.2 and Equation 5.3 weights the experience
of other agents, i.e. for small values of λ, the agent learns mostly from its own
experience, while for large values of λ, the agent learns mostly from the experience
of other agents. We show in our experiments that SEAC is comparably insensitive
to values of λ (Section 5.3.2) and use λ = 1 in our experiments. We refer to

82 Chapter 5. Experience Sharing for Multi-Agent Reinforcement Learning

Algorithm 3 Shared Experience Actor-Critic Training
Initialise: parameters ϕi and θi of the policy and value function of agent i for
each agent i ∈ I
for each episode do

Obtain initial state s0 ∼ µ and joint observation o0

for each step t = 0, · · · , T do
for each agent i ∈ I do

Select action at
i ∼ π(ht

i; θi)
end for
Apply joint action at = (at

1, . . . , a
t
N)

Receive next state st+1 ∼ T (st, at), rewards rt
i = Ri(st, at, st+1) for each

agent i, and joint observation ot+1 ∼ O(st, at)
for each agent i ∈ I do

Update ϕi by minimising L(ϕi) (Equation 5.2)
Update θi by minimising L(θi) (Equation 5.3)

end for
end for

end for

the resulting algorithm as shared experience actor-critic (SEAC) and provide
pseudocode in Algorithm 3.

5.2 Formal Derivation

Within the POSG formalism, we assume that all agents have identical observation
and action spaces, i.e. O1 = . . . = ON and A1 = . . . = AN , which we will denote
with O and A thereafter. We note that this is a common assumption made in
the practical implementations of MARL algorithms.

Furthermore, for agents to be able to sensibly share experiences with each
other following SEAC, we assume that the environment is symmetrical. Intu-
itively, we consider an environment symmetrical if agents can swap places and
receive the same next observations and rewards after applying an action as the
other agent they swapped places with would have received when applying the
same action. We note that the agents within the SEAC algorithm are unable
to identify from their experiences whether an environment is symmetrical or not,

5.2. Formal Derivation 83

so it is within the responsibility of the algorithm designer to verify that this as-
sumption is uphold. Below, we will formalise the assumptions underlying this
symmetry for the simplified case of a fully observable two-agent stochastic game
where agents are able to observe the full state of the environment.2

Assumption 1 (Symmetry Assumption). We assume there exists a function
f : S 7→ S such that

∀s, s′ ∈ S : ∀(a1, a2) ∈ A : R1(f(s), (a2, a1), f(s′)) = R2(s, (a1, a2), s′) (5.4)

and ∀s, s′ ∈ S : ∀(a1, a2) ∈ A : T (f(s′) | f(s), (a2, a1)) = T (s′ | s, (a1, a2)) (5.5)

Intuitively, given a state s, f(s) swaps the agents: in f(s) agent 1 is wherever
agent 2 was in s and vice versa.

In the following, we abbreviate the notation for policy and value functions
of agents for clarity and denote the policy of agent 1 and 2 with π1 and π2,
respectively, instead of writing out the parameterisation with π(·;ϕ1) and π(·;ϕ2).
Similarly, we will denote the value functions of agent 1 and 2 with V1 and V2.

To account for the differences in data distributions of experiences when fol-
lowing different policies, we compute importance sampling (IS) weights that can
be defined for any function g over actions as follows:

Ea∼π1(a|s)[g(a)] = Ea∼π2(a|s′)

[
π1(a | s)
π2(a | s′)

g(a)
]

(5.6)

During data collection, SEAC agents follow their respective policies to collect
data (Algorithm 3), i.e. agent 1 follows π1 and agent 2 follows π2. We will now
derive the off-policy part of the SEAC policy and critic losses for training the
policy and value function of agent 1, using experience collected from agent 2.
Note, we only derive the losses for agent 1 in the case of a stochastic game with
two agents. The derivation for the loss of agent 2 using experience of agent 1 can
be done analogously by substituting agent indices. Furthermore, we only derive
the off-policy terms of both losses. For the on-policy terms of both losses, we
refer to the previously introduced A2C algorithm (Mnih et al., 2016) which SEAC

2We note that the derivations provided in this section differ from the original derivations
provided within Christianos et al. (2020). We modified the starting condition of the proofs
and now start from the situation where all actions are sampled on-policy instead of from the
off-policy policy gradient algorithm (Degris et al., 2012) as done in the original work. This
change allowed us to remove the reward independence assumption which is quite restrictive and
unnecessary for the following proofs. Overall these changes result in a more general derivation
of the SEAC algorithm.

84 Chapter 5. Experience Sharing for Multi-Agent Reinforcement Learning

builds on in the independent learning setting (Section 2.6.1). Lastly, we derive the
policy loss for expected return estimates rather than advantage estimates as used
in SEAC. The SEAC loss is obtained from the derived policy loss by subtracting
a baseline value given by the value estimate of the current state. This baseline is
shown to not affect the gradients in expectation and can therefore be omitted in
this derivation (Sutton and Barto, 2018).

The off-policy term of the SEAC policy loss for agent 1 using the experience
of agent 2 can be written as follows:

Proposition 1 (Off-policy Policy Loss).

L(ϕ1) = Eat
1∼π1(st)

at
2∼π2(st)

[
π1(at

2 | f(st))
π2(at

2 | st)
log π1(at

2 | f(st))
(
rt

2 + γV1(f(st+1))
)]

(5.7)

For the following proof, we will start with the simplified case where both
agents 1 and 2 follow the policy π1, i.e. actions at

1 and at
2 are both sampled from

π1, at
1 by applying π1 in the original state st and at

2 by applying π1 in the state
f(st) where agent 1 is put in the place of agent 2. In this case, it is clear that
all the experience is on-policy for policy π1 and, thus, can be used in the usual
policy gradient loss to update the parameters of the policy ϕ1. From this point,
we will derive the off-policy SEAC loss as defined in Equation 5.7 by applying
our symmetry assumption to “swap” the reward of agent 1 with the reward of
agent 2, and then “swapping” agent policies such that at

2 is sampled from policy
π2 with IS weights to account for the distribution shift:

Proof.

L(ϕ1) = E at
1∼π1(st)

at
2∼π1(f(st))

[
log π1(at

2 | f(st))
(
R1(f(st), (at

2, a
t
1), f(st+1)) + γV1(f(st+1))

)]
(5.8)

A= E at
1∼π1(st)

at
2∼π1(f(st))

[
log π1(at

2 | f(st))
(
R2(st, (at

1, a
t
2), st+1) + γV1(f(st+1))

)]
(5.9)

= E at
1∼π1(st)

at
2∼π1(f(st))

[
log π1(at

2 | f(st))
(
rt

2 + γV1(f(st+1))
)]

(5.10)

IS= Eat
1∼π1(st)

at
2∼π2(st)

[
π1(at

2 | f(st))
π2(at

2 | st))
log π1(at

2 | f(st))
(
rt

2 + γV1(f(st+1))
)]

(5.11)

5.3. Experiments 85

For notational clarity, we omit the next states sampled from T under the
expectation:

st+1 ∼ T (st, (at
1, a

t
2)) and f(st+1) ∼ T (f(st), (at

2, a
t
1)) (5.12)

In a similar manner, we can derive the off-policy term of the SEAC value loss
which can be written as follows:

Proposition 2 (Off-policy Value Loss).

L(θi) = Eat
1∼π1(st)

at
2∼π2(st)

[
π1(at

2 | f(st))
π2(at

2 | st))
(
rt

2 + γV1(f(st+1))− V1(f(st))
)2
]

(5.13)

Proof.

L(θ1) = E at
1∼π1(st)

at
2∼π1(f(st))

[(
R1(f(st), (at

2, a
t
1), f(st+1)) + γV1(f(st+1))− V1(f(st))

)2
]

(5.14)
A= E at

1∼π1(st)
at

2∼π1(f(st))

[(
R2(st, (at

1, a
t
2), st+1) + γV1(f(st+1))− V1(f(st))

)2
]

(5.15)

= E at
1∼π1(st)

at
2∼π1(f(st))

[(
rt

2 + γV1(f(st+1))− V1(f(st))
)2
]

(5.16)

IS= Eat
1∼π1(st)

at
2∼π2(st)

[
π1(at

2 | f(st))
π2(at

2 | st))
(
rt

2 + γV1(f(st+1))− V1(f(st))
)2
]

(5.17)

This concludes the proofs for the off-policy terms of the SEAC policy and
value losses for agent 1 in a two-agent fully observable stochastic game.

5.3 Experiments

We conduct experiments in ten multi-agent tasks across four environments, visu-
alised in Figure 5.2, with a focus on sparse-reward problems. We compare SEAC
to two baselines as well as three MARL algorithms which have been shown to
perform well in multi-agent tasks: MADDPG (Lowe et al., 2017), QMIX (Rashid
et al., 2020b) and ROMA (Wang et al., 2020a).

Environments We evaluate in four tasks of both the multi-robot warehouse
and level-based foraging environments introduced in Section 4.1. However, we
note that in this chapter we train agents in these environments using individual

86 Chapter 5. Experience Sharing for Multi-Agent Reinforcement Learning

(a) Predator Prey (b) SMAC (c) LBF (d) RWARE

Figure 5.2: Environments used in our evaluation: (a) predator prey, (b) SMAC 3m
with sparse rewards, (c) four LBF tasks, and (d) four RWARE tasks. Controlled
agents are coloured red.

rewards for all agents instead of using common rewards. Additionally, we evaluate
in a sparse reward variant of a SMAC task (Section 4.1) where agents only receive
terminal rewards of−1, 0, or +1 for a defeat, draw, or victory, respectively. Lastly,
we include a sparse reward variant of the MPE predator prey task (Section 4.1),
where predators receive a reward of 1 for catching the prey and 0 otherwise.

We compare SEAC to two main baselines across all experiments.

Independent Advantage Actor-Critic (IA2C) The first baseline is applying the
A2C algorithm in an independent way for MARL (Section 2.6.1). This baseline
differs from SEAC in that it each agent updates its policy and value function
using only its own experience, i.e. SEAC with λ = 0 would be identical to IA2C.
Comparison to this baseline allows us to investigate the impact of using the
experience of other agents in SEAC.

Shared Network Actor-Critic (SNAC) For the second baseline, we train a
single shared policy and value function for all agents using the experience of all
agents. During evaluation, each agent gets a copy of the policy and independently
follows it. During training, each agent independently computes the policy and
value loss of A2C (Mnih et al., 2016) using its experience. Then, the sum of policy
and value loss gradients across all agents are used to optimise the parameters of
the shared policy and value function. For this baseline, no importance sampling
is needed since all trajectories are on-policy. This baseline is similar to SEAC
in that the shared parameters are trained using the collective experience of all
agents which can significantly improve sample efficiency as already shown in Sec-

5.3. Experiments 87

tion 4.3.3. In SEAC, agents similarly train their policy and value functions using
the experience of all agents. Comparing SEAC against this baseline allows us to
identify whether agents using experience sharing are learning identical policies, in
which case SEAC and SNAC should perform identical, or whether SEAC agents
are able to learn different policies despite being trained on the same collective
experience.

In a subset of the evaluation tasks, we further compare to three more sophis-
ticated MARL algorithms: MADDPG (Lowe et al., 2017), QMIX (Rashid et al.,
2020b) and ROMA (Wang et al., 2020a). We use the implementations provided
by the authors and tuned the learning rate, exploration rate, and batch sizes for
each evaluation environment for these algorithms. We note that during evalu-
ation, QMIX and ROMA use greedy policies (ϵ = 0), while MADDPG, SEAC,
IA2C, and SNAC apply stochastic policies.

Table 5.1: Hyperparameters used for
SEAC, IA2C and SNAC.

Hyperparameter Value

learning rate 3e−4

network size 64× 64
γ 0.99
entropy coef 0.01
grad clip 0.5
parallel processes 4
n-steps 5
SEAC λ 1.0

Algorithm Details For IA2C, SNAC,
and SEAC, we build on the A2C
algorithm using 5-step returns and
sampling experiences across four syn-
chronous environments in parallel (Mnih
et al., 2016). We also add a entropy
regularisation term to the policy loss
as outlined in Section 2.3.3. For SEAC,
we compute the entropy regularisation
term for the policy loss of agent i using
only the policy and on-policy experi-
ences of agent i. Due to computational
cost of experiments, we conducted a
small hyperparameter search for IA2C in RWARE; all further experiments, in-
cluding for SNAC and SEAC, use the same hyperparameters listed in Table 5.1.
All results presented are averaged across five seeds, with the standard deviation
plotted as a shaded area. For calculation of evaluation returns reported in Ta-
ble 5.2, the final policies per seed were evaluated for 100 episodes.

88 Chapter 5. Experience Sharing for Multi-Agent Reinforcement Learning

1 2 3 4 5
Environment Steps 1e6

0.0

0.5

1.0

1.5

2.0
Re

tu
rn

s
SEAC (ours)
SNAC
IA2C

(a) PP, sparse rewards

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e8

0.16

0.14

0.12

0.10

0.08

0.06

0.04

Re
tu

rn
s

SEAC (ours)
SNAC
IA2C

(b) SMAC with three marines, sparse rewards

Figure 5.3: Training returns in sparse-reward variations of PP and SMAC-3m.

0 1 2 3 4 5
Environment Steps 1e7

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

Re
tu

rn
s

SEAC (ours)
SNAC
IA2C

(a) LBF 12x12-2p-1f

0 1 2 3 4 5
Environment Steps 1e7

0.2

0.4

0.6

0.8
Re

tu
rn

s

SEAC (ours)
SNAC
IA2C

(b) LBF 10x10-3p-3f

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e7

0.0

0.1

0.2

0.3

0.4

0.5

Re
tu

rn
s

SEAC (ours)
SNAC
IA2C

(c) LBF: 15x15-3p-4f

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e8

0.1

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Re
tu

rn
s

SEAC (ours)
SNAC
IA2C

(d) LBF: 8x8-2p-2f-coop

Figure 5.4: Training returns in four LBF tasks.

5.3.1 Results

Figures 5.3 to 5.5 show the training curves of SEAC, SNAC and IA2C for all
tested environments. For RWARE and LBF, tasks are sorted from easiest to
hardest.

In the sparse PP task (Figure 5.3a) only SEAC learns to solve the task with

5.3. Experiments 89

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e7

0

10

20

30

40

50

Re
tu

rn
s

SEAC (ours)
SNAC
IA2C

(a) RWARE 10x11-4ag

0 1 2 3 4 5 6 7 8
Environment Steps 1e7

0

5

10

15

20

Re
tu

rn
s

SEAC (ours)
SNAC
IA2C

(b) RWARE 10x11-2ag

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Environment Steps 1e8

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Re
tu

rn
s

SEAC (ours)
SNAC
IA2C

(c) RWARE 10x11-2ag-hard

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e8

0

5

10

15

20

25

Re
tu

rn
s

SEAC (ours)
SNAC
IA2C

(d) RWARE 10x20-4ag

Figure 5.5: Training returns in four RWARE tasks.

consistent learning across seeds while IA2C and SNAC are unable to learn to
catch the prey.

In SMAC with sparse rewards (Figure 5.3b), SEAC outperforms both base-
lines. However, with mean returns close to zero, the agents have not learned to
win the battles but rather to run away from the enemy. This is not surprising
since our experiments (Table 5.2) show that even state-of-the-art methods de-
signed for these environments (e.g. QMIX) do not successfully solve this sparsely
rewarded task.

For LBF (Figure 5.4), no significant difference can be observed between SEAC
and the two baseline methods IA2C and SNAC for the easiest variant (Fig-
ure 5.4a). However, as the tasks become more challenging and rewards become
sparser the improvement becomes apparent. For increased number of agents,
foods and gridsize (Figures 5.4b to 5.4d), IA2C and SNAC converge to signifi-
cantly lower average returns than SEAC. In the largest grid (Figure 5.4c), IA2C
does not show any signs of learning due to the sparsity of the rewards whereas
SEAC learns to collect some of the food. We also observe that SEAC tends to

90 Chapter 5. Experience Sharing for Multi-Agent Reinforcement Learning

Table 5.2: Final mean evaluation returns across five random seeds with standard
deviation on a selection of tasks. Highest means per task (within one standard
deviation) are shown in bold.

IA2C SNAC SEAC (ours) QMIX MADDPG ROMA

PP (sparse) −0.04± 0.13 −0.04± 0.01 1.93 ± 0.13 0.05± 0.07 2.04 ± 0.08 0.04± 0.07
SMAC-3m (sparse) −0.13± 0.01 −0.14± 0.02 −0.03 ± 0.03 0.00 −0.01 ± 0.01 0.00
LBF-15x15-3p-4f 0.13± 0.04 0.18± 0.08 0.43 ± 0.09 0.03± 0.01 0.01± 0.02 0.03± 0.02
LBF-8x8-2p-2f-coop 0.37± 0.10 0.38± 0.10 0.64 ± 0.08 0.79 ± 0.31 0.01± 0.02 0.01± 0.02
RWARE-10x20-4ag 13.75± 1.26 9.53± 0.83 23.96 ± 1.92 0.00 0.00 0.00
RWARE-10x11-4ag 40.10 ± 5.60 36.79± 2.36 45.11 ± 2.90 0.00 0.00 0.01± 0.01

converge to its final policy in fewer time steps than IA2C.
In RWARE (Figure 5.5), results are similar to LBF. Again, the two baseline

methods IA2C and SNAC converge to lower average returns than SEAC for harder
tasks. In the hardest task (Figure 5.5d), SEAC converges to final mean returns
∼70% and ∼160% higher than IA2C and SNAC, respectively, and again converges
in fewer steps than IA2C.

In Table 5.2 we also present the final evaluation returns of three state-of-the-
art MARL algorithms, QMIX, MADDPG, and ROMA, in a selection of tasks.
These algorithms show no signs of learning in most of these tasks. The only
exceptions are MADDPG matching the returns of SEAC in the sparse PP task
and QMIX performing comparably to SEAC in the cooperative LBF task. QMIX
and ROMA assume tasks to be fully-cooperative, i.e. all agents receive the same
reward signal. Hence, in order to apply the two algorithms, we modified non-
cooperative environments to return the sum of all individual agent returns as the
shared reward. While common rewards could make learning harder, IA2C can
also learn successfully in RWARE tasks under the common reward setting as seen
in Chapter 4.

5.3.2 Analysis

Similar patterns can be seen for the different algorithms across all tested envi-
ronments. It is not surprising that IA2C requires considerably more environment
samples to converge, given that the algorithm is less efficient in using them; IA2C
agents only train on their own experience. This is further evident when noticing
that in RWARE (Figures 5.5a to 5.5d) the learning curve of SEAC starts moving
upwards in roughly 1/N the time steps compared to IA2C, where N refers to the

5.3. Experiments 91

0

10

Ag
en

t R
et

ur
ns

0 1 2 3 4 5
Environment Steps 1e7

0

1

2

3
IS

 W
ei

gh
ts

Figure 5.6: Importance weights of one
SEAC agent in RWARE 10x11-2ag-
hard.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Environment Steps 1e8

0

1

2

3

4

5

6

7

Pe
r A

ge
nt

 R
et

ur
ns

In IA2C, agents improve
later and at different rates

SEAC (ours)
IA2C

Figure 5.7: Best vs. worst performing
agents on RWARE 10x20-4ag.

number of agents. Also, it is not surprising that SNAC does not achieve as high
returns after convergence: sharing a single policy across all agents impedes their
ability to coordinate or develop distinct behaviours that lead to higher returns.

We conjecture that SEAC converges to higher final returns due to agents
learning simultaneously when sharing experiences, combined with the flexibility
to develop differences in policies to improve coordination. We observe that SEAC
is able to learn similarly quickly to SNAC because the combined local gradients
provide a very strong learning direction. However, while SNAC levels off at
some point due to the use of identical policies, which limit the agents’ ability to
coordinate, SEAC can continue to explore and improve because agents are able to
develop different policies to further improve coordination. Figure 5.6 shows that
encountered importance weights during SEAC optimisation are centred around 1,
with most weights staying in the range [0.5; 1.5]. This indicates that the agents
indeed learn similar but not identical policies. The divergence of the policies is
attributed to the random initialisation of networks, along with the agent-centred
entropy factor. The range of the importance weights also shows that, in our case,
importance sampling does not introduce significant instability in the training.
The latter is essential for learning since importance weighting for off-policy RL is
known to suffer from significant instability and high variance through diverging
policies (e.g., Sutton and Barto, 2018; Precup, 2000).

In contrast, we observe that IA2C starts to improve at a much later stage than
SEAC because agents need to explore for longer, and when they start improving
it is often the case that one agent improves first while the other agents catch up

92 Chapter 5. Experience Sharing for Multi-Agent Reinforcement Learning

0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment Steps 1e7

0.0

0.1

0.2

0.3

0.4

0.5
Re

tu
rn

s
lambda=1.0
lambda=0.9
lambda=0.7
lambda=0.5
lambda=0.3

(a) LBF 15x15-3p-4f

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment Steps 1e7

0

5

10

15

20

Re
tu

rn
s

lambda=1.0
lambda=0.9
lambda=0.7
lambda=0.5
lambda=0.3

(b) RWARE 10x20-2ag

Figure 5.8: Training returns of SEAC with different values of λ in a LBF and RWARE
task.

later, which can severely impede learning. Figure 5.7 shows that agents using
IA2C end up learning at different rates, and the slowest one ends up with the
lowest final returns. In learning tasks that require coordination, an agent being
ahead of others in its training can impede overall training performance.

We find examples of agents learning at different rates being harmful to overall
training in all our tested environments. In RWARE, an agent that learns to fulfil
requests can make the learning more difficult for others by delivering all requests
on its own. Agents with slightly less successful exploration have a harder time
learning a rewarding policy when the task they need to perform is constantly done
by others. In LBF, agents can choose to cooperate to gather highly rewarding
food or focus on food that can be foraged independently. The latter is happening
increasingly often when an agent is ahead in the learning curve as others are
still aimlessly wandering in the environment. In the PP task, the predators must
approach the prey simultaneously, but this cannot be the case when one predator
does not know how to do so. In the SMAC-3m task, a single agent cannot be
successful if its team members do not contribute to the fight. The agent would
incorrectly learn that fighting is not viable and therefore prefer to run from the
enemy, which however is not an optimal strategy.

We also investigate the sensitivity of the SEAC algorithm to the choice of λ
by conducting a sensitivity analysis in one LBF and one RWARE task in which
the gap in sample efficiency between SEAC and IA2C was particularly large.
Figure 5.8 shows that SEAC achieves similar evaluation returns in both tasks for a
wide range of values for λ. These results indicate that SEAC is not highly sensitive

5.4. Shared Experience Deep Q-Networks 93

Table 5.3: Average training time of IA2C and SEAC across all evaluation tasks, mea-
sured by mean process time (mins:secs) required for 100,000 time steps of training.

IA2C SEAC Increase

Foraging-10x10-3p-3f 2:00 2:04 3.86%
Foraging-12x12-2p-1f 1:22 1:24 2.94%
Foraging-15x15-3p-4f 2:01 2:06 3.90%
Foraging-8x8-2p-2f-coop 1:21 1:24 3.78%
rware-tiny-2ag 1:41 1:43 1.65%
rware-tiny-2ag-hard 2:05 2:09 2.97%
rware-tiny-4ag 2:49 2:53 2.25%
rware-small-4ag 2:50 2:55 2.44%
Predator Prey 2:44 2:49 3.39%
SMAC (3m) 6:23 6:25 0.38%

to values of the hyperparameter λ. We further observe that the performance of
SEAC decreases as λ moves from 1 to 0, eventually converging to IA2C for λ = 0.

Lastly, we consider the computational cost introduced by SEAC. Table 5.3
contains process time required for running IA2C and SEAC. Timings were mea-
sured on a 6th Gen Intel i7 @ 4.6 Ghz running Python 3.7 and PyTorch 1.4. The
average time for running and training on 100,000 environment iterations is dis-
played. Only process time (the time the program was active in the CPU) was
measured, rounded to seconds. As we can see, experience sharing with SEAC in-
creased running time by less than 3% across all environments compared to IA2C.
We find that often the environment is the bottleneck for training speeds rather
than the algorithm optimisation and as such, more complex and slower simulators,
such as SMAC, show a lower percentage difference between algorithms.

5.4 Shared Experience Deep Q-Networks

To investigate the generality of experience sharing and its efficacy in MARL,
we apply the idea of experience sharing to off-policy MARL algorithms at the
example of independent Q-learning (Tan, 1993) based on DQN (Mnih et al., 2015)

94 Chapter 5. Experience Sharing for Multi-Agent Reinforcement Learning

Algorithm 4 Shared Experience Deep Q-Networks
Initialise: parameters θi and θ̄i = θi of the value function and target network
of agent i for each agent i ∈ I
Initialise: empty shared replay buffer D ← ∅
for each episode do

Obtain initial state s0 ∼ µ and joint observation o0

for each step t = 0, · · · , T do
for each agent i ∈ I do

Select action at
i ∼ ϵ-greedy(Q(ht

i, ·; θi))
end for
Apply joint action at = (at

1, . . . , a
t
N)

Receive next state st+1 ∼ T (st, at), rewards rt
i = Ri(st, at, st+1) for each

agent i, and joint observation ot+1 ∼ O(st, at)
for each agent i ∈ I do

Store experience tuple (ht
i, a

t
i, r

t
i , h

t+1
i) in D

end for
Sample batch of experiences from D
for each agent i ∈ I do

Update θi by minimising the average loss L(θi) (Equation 5.18) com-
puted over the sampled batch

end for
end for

end for

(introduced in Sections 2.3.2 and 2.6.1). The loss for IDQN can be written as:

L(θi) = E(ht
i,at

i,rt
i ,ht+1

i)∼Di

[(
rt

i + γmax
a∈Ai

Q(ht+1
i , ai; θi)−Q(ht

i, a
t
i; θi)

)2
]

(5.18)

with θ and θ denoting the parameters of the Q-network and the target network,
respectively. For each update, a batch of experience tuples (ht

i, a
t
i, r

t
i , h

t+1
i), con-

sisting of observation history, applied action, received reward, and next observa-
tion history of agent i, are sampled from a replay buffer Di. In IDQN, each agent
i maintains its own replay buffer Di containing its individual experience tuples.

To extend IDQN with experience sharing, agents can compute the same loss
as given in Equation 5.18 but sample experience tuples from the replay buffer of
any agent, i.e. agents sample experiences from both their own replay buffer as

5.4. Shared Experience Deep Q-Networks 95

0.0 0.2 0.4 0.6 0.8 1.0
Environment Steps 1e7

0

2

4

6

8

R
et

ur
ns

SEDQN (ours)
IDQN

(a) RWARE 10x20-2ag

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Environment Steps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

R
et

ur
ns

SEDQN (ours)
IDQN

(b) LBF 8x8-2p-2f-coop

Figure 5.9: Average total returns of SEDQN and IDQN in one RWARE and LBF task.

well as the replay buffer of all other agents. We refer to this novel algorithm as
shared experience deep Q-networks (SEDQN). In contrast to SEAC, no off-policy
correction using importance sampling weights is required in SEDQN since DQN
is naturally a off-policy algorithm and, thus, does not assume that the loss is
computed on experiences generated by following the updated policy. SEDQN
optimises the same loss as IDQN (Equation 5.18) but samples experiences from
a shared replay buffer D = ⋃

i∈I Di containing the individual experiences of all
agents. In practise, we maintain a single replay buffer for all agents that contains
the experiences of all agents. In contrast to SEAC and IA2C, SEDQN and IDQN
are naturally optimised using exactly the same number of samples as determined
by the batch size. We provide pseudocode for SEDQN in Algorithm 4.

We evaluate SEDQN and IDQN in one RWARE and one LBF task with
sparse rewards. Figure 5.9 shows the evaluation returns of SEDQN and IDQN
in both tasks over five seeds. Overall, we find that the experience sharing of
SEDQN improves performance compared to IDQN, but we do not observe simi-
lar improvements as observed for SEAC compared to IA2C. In the RWARE task,
sharing experience appears to reduce variance considerably despite not impact-
ing average returns significantly. On the other hand, on the LBF task average
returns increased significantly by sharing experience and at its best evaluation
even exceeded average returns achieved by SEAC. However, variance of off-policy
SEDQN and IDQN is found to be significantly larger compared to on-policy
SEAC, IA2C and SNAC.

We hypothesise that the distribution shift of the off-policy experiences of

96 Chapter 5. Experience Sharing for Multi-Agent Reinforcement Learning

different agents introduces instabilities in training (van Hasselt et al., 2018; Fu-
jimoto et al., 2018) and that off-policy optimisation might suffer more from the
non-stationarity of the policies of other agents (Section 4.4). Furthermore, while
SEAC benefited from leveraging more experience samples for each update com-
pared to IA2C, no such benefit is leveraged in SEDQN. We leave further investi-
gation into the applicability of experience sharing in off-policy MARL algorithms
for future work, but consider these experiments as a preliminary indication that
experience sharing can provide value for both on- and off-policy algorithms.

Gerstgrasser et al. (2024) built on top of SEDQN and introduced a novel
method that modifies SEDQN by only sharing a subset of experiences between
agents. They find that sharing all experiences across agents, as done in our
experiments, can harm training and cause instability. Instead, they propose to
identify particularly valuable experience samples based on the TD-error, following
the intuition of prioritised experience replay (Schaul et al., 2016) which prioritises
experiences from the replay buffer proportional to their TD-error. They show that
sharing experiences in such a selective manner can significantly improve upon the
performance of IDQN and SEDQN.

5.5 Related Work

Centralised Training with Decentralised Execution Many recent MARL algo-
rithms leverage the paradigm of centralised training with decentralised execution
(CTDE) (Section 2.6.2) where data of all agents is used during training but each
agent learns decentralised (locally-executable) policies. Due to its use of data of
all agents during training, SEAC can be considered a CTDE algorithm. However,
SEAC is notably distinct from many CTDE algorithms like value decomposition
algorithms (Section 2.6.2.1) and actor-critic algorithms with centralised critics
like MADDPG and COMA (Section 2.6.2.2) in that these algorithms only rein-
force an agent’s own tried actions. In contrast, SEAC uses shared experience to
reinforce good actions tried by any agent. Furthermore, SEAC does so without
learning larger critic networks conditioned on centralised information such as the
joint observation history, full environment state, or joint action. Our experiments
show that CTDE algorithms like MADDPG, QMIX, and ROMA were unable to
learn effective policies in sparse-reward environments while SEAC learned suc-
cessfully in most cases.

5.5. Related Work 97

Agents Teaching Agents Other related approaches propose to leverage exper-
tise of existing teacher agents to improve the efficiency of training new learner
agent (Da Silva et al., 2020). Such teaching can be regarded as a form of trans-
fer learning (Pan and Yang, 2009) among RL agents. The teacher would either
implicitly or explicitly be asked to evaluate the behaviour of the learner and
send instructions to the other agent. Contrary to SEAC, most such approaches
do focus on single-agent RL (Clouse, 1996; Fachantidis et al., 2019). However,
even in such teaching approaches for multi-agent systems (Da Silva et al., 2017,
2018) experience is shared in the form of knowledge exchange following a teacher-
learner protocol. Instead, SEAC shares agent trajectories for learning and does
not rely on the exchange of explicit queries or instructions, introducing minimal
additional cost.

Learning from Demonstrations Training agents from trajectories (Schaal, 1997)
of other agents (Zimmer et al., 2014) or humans (Taylor et al., 2011) is a com-
mon case of teaching agents. Demonstration data can be used to derive a pol-
icy (Ho and Ermon, 2016) which might be further refined using typical RL train-
ing (Gao et al., 2018) or to shape the rewards biasing towards previously seen
expert demonstrations (Brys et al., 2015). These approaches leverage expert tra-
jectories to speed up or simplify learning for single-agent problems. In contrast,
SEAC makes use of trajectories from other agents which are generated by concur-
rently learning agents in a multi-agent system. As such, we aim to speed up and
synchronise training in MARL whereas learning from demonstrations focuses on
using previously generated data for application in domains like robotics where
generating experience samples is expensive.

Distributed Reinforcement Learning Sharing experience among agents is re-
lated to recent work in distributed RL that aim to effectively use large-scale com-
puting resources for RL. Asynchronous methods such as A3C (Mnih et al., 2016)
execute multiple actors in parallel to generate trajectories more efficiently and
break data correlations. Similarly, IMPALA (Espeholt et al., 2018) and SEED
RL (Espeholt et al., 2020) are off-policy actor-critic algorithms to distribute data
collection across many actors with optimisation being executed on a single learner.
Network parameters, observations or actions are exchanged after each episode or
time step, respectively, and off-policy correction is applied. These approaches

98 Chapter 5. Experience Sharing for Multi-Agent Reinforcement Learning

are similar to SEAC in their use of multiple policies to gather data that can be
leveraged to make training more efficient but distinct in their setting and goal.
SEAC aims to leverage the experience of multiple policies in a multi-agent setting
to improve sample efficiency and synchronisation between agents in MARL. In
contrast, all these approaches only share experience of multiple actors to speed
up the learning of a single RL agent and by breaking correlations in the data.

Population-play Population-based training is another line of research aiming
to improve exploration and coordination in MARL by training a population of
diverse sets of agents (Lanctot et al., 2017; Wang et al., 2019a; Leibo et al., 2019;
Jaderberg et al., 2019; Long et al., 2020). Leibo et al. (2019) note the overall
benefits on exploration when sets of agents are dynamically evolved and mixed. In
their work, some agents share policy networks and are trained alongside evolving
sets of agents. Similarly to Leibo et al. (2019), we observe benefits on exploration
due to agents influencing each other’s trajectories. However, SEAC is different
from such population-play as it only trains a single set of distinct policies for all
agents, thereby avoiding the significant computational cost involved in training
multiple sets of agents.

5.6 Conclusion

This paper introduced SEAC, a novel multi-agent actor-critic algorithm in which
agents learn from the experience of others. In our experiments, SEAC outper-
formed independent learning, shared policy training, and state-of-the-art MARL
algorithms in ten sparse-reward learning tasks across four environments, demon-
strating improved sample efficiency and final returns. We discussed a theme
commonly found in MARL environments: agents learning at different rates im-
pedes exploration, leading to sub-optimal policies. SEAC overcomes this issue
by combining the local gradients to concurrently learn similar policies for all
agents without restricting the policies of all agents to be identical. Lastly, shar-
ing experience is appealing especially due to its simplicity. SEAC is simple to
implement, introduces almost no additional computational cost, and no addi-
tional hyperparameter tuning is required but can significantly improve learning
efficiency. Therefore, its use should be considered in all environments that satisfy
the underlying symmetry assumption.

Chapter 6

Ensemble Value Functions for
Multi-Agent Exploration

Publication
This chapter is based on and adapted from the following publication:

Lukas Schäfer, Oliver Slumbers, Stephen McAleer, Yali Du, Stefano V.
Albrecht, and David Mguni. “Ensemble value functions for efficient explo-
ration in multi-agent reinforcement learning.” In Adaptive and Learning
Agents Workshop at the AAMAS conference. 2023.

In the previous chapter, we proposed a novel approach for exploration in
MARL that shares experience across agents to improve the efficiency of MARL
training, in particular for multi-agent policy gradient algorithms in sparse-reward
tasks. In this chapter,1 we focus on exploration for value-based MARL algorithms
that often still rely on random exploration processes, such as ϵ-greedy (e.g., Sune-
hag et al., 2018; Rashid et al., 2020b). We argue that such random exploration
can lead to inefficient exploration of the joint action space and, thereby, can result
in poor performance in challenging cooperative exploration tasks, as previously
seen in Chapter 4.

To understand how we can design better exploration strategies to overcome
this inefficiency, we first outline two important properties that an effective explo-
ration strategy in MARL should have. Similar to single-agent RL, an effective

1The presented research was partly conducted during an internship at Huawei Noah’s Ark
Lab and has since been extended.

99

100 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

Figure 6.1: Motivational example: Two agents (triangles) can independently explore
their movement (left), but rely on joint cooperation to pick up the heavy circular goal
object (right). To overcome the inefficiency of random exploration in discovering such
cooperation, we leverage uncertainty across ensembles of value functions to guide the
multi-agent exploration towards state-action pairs that might require cooperation.

exploration strategy in MARL might incentivise agents to explore many states
and actions, for example by encouraging exploration of states and actions that
have infrequently been visited. This is important for agents to learn accurate
value estimates and policies that can solve a task. Additionally and specific to
MARL, an exploration strategy should also incentivise agents to explore their
possible interactions with other agents. Due to the large joint action space of
all agents, it is challenging to do so exhaustively, but we can design exploration
strategies that incentivise agents to focus on such interactions in states where
they matter. We believe such exploration strategies are particularly promising in
tasks that require agents to cooperate with each other and cannot be solved by
any agent individually.

Consider the example, visualised in Figure 6.1, in which two agents have to
navigate a grid-world to jointly pick up a heavy object. To learn to pick up the
goal object, agents need to cooperate by selecting the pick-up action in a state
where both agents are next to the object. However, such cooperation is highly
unlikely when following a random exploration policy. In contrast, if agents are
not yet next to the object, there is no potential for cooperation across agents and,
thus, there is no need to exhaustively explore the joint action space. Instead,
agents can independently explore their movement in such states, so random ex-
ploration might be sufficient in these cases. This example illustrates that random
exploration can be inefficient in exploring cooperation between agents, and shows
the need for exploration strategies that identify and focus on exploring actions of
all agents in states that require cooperation or, more generally, agent interactions.

101

Following this intuition, we propose ensemble value functions for multi-agent
exploration (EMAX), a general framework to seamlessly extend any value-based
MARL algorithms by training ensembles of value functions for each agent. To in-
centivise agents to focus their exploration on state-action pairs that may require
cooperation across multiple agents, EMAX follows an upper-confidence bound
(UCB) policy (Auer, 2002) over the average and disagreement of value estimates
across the ensemble. Originally proposed for multi-armed bandit problems, UCB
follows the principle of optimism in the face of uncertainty and selects greedy
actions with respect to value estimates in addition to an uncertainty term that
decays as actions (and states) are selected. In the beginning of training, the un-
certainty term is large and, thus, a UCB policy would try many different actions
but as actions have been tried many times the uncertainty term decays and the
UCB policy would converge towards a greedy policy with respect to its value esti-
mates. In the case of EMAX, the exploration strategy prioritises the exploration
of actions that appear promising (as measured by high average value estimates)
and that are infrequently visited or have the potential for cooperation between
agents (as measured by high disagreement in value estimates). To better under-
stand the effects of such an exploration strategy, we discuss multiple effects that
can cause disagreement in value estimates across the ensemble:

1. Value estimates might have not converged yet, indicating that the states and
actions have not yet been sufficiently explored and, thus, more exploration
in this part of the environment is needed. This epistemic uncertainty is
commonly followed in prior work on single-agent exploration (e.g., Auer,
2002; Osband et al., 2016a; Lee et al., 2021; Liang et al., 2022).

2. The transitions of the environment are stochastic, leading to variability in
the returns. Following such aleatoric uncertainty for exploration can be
valuable when learning accurate value estimates in these states is particu-
larly challenging, as long as the exploration strategy does not overly focus
on such stochasticity (Burda et al., 2019a).

3. In MARL, the variability in returns can also be due to the stochasticity of
the policies of other agents and indicate the potential for agent interactions
such as cooperation. To illustrate why this might be the case, we return
to our motivational example, in which both agents only receive rewards for
successfully picking up the object. In a state where both agents are next

102 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

to the goal object (Figure 6.1, right), agents may receive varying rewards
when choosing the pick-up action since their reward depends on whether
the other agent also selects the pick-up action. Only if both agents select
the pick-up action do they succeed and receive a positive reward, whereas
if any agent does not select the pick-up action they do not receive such a
reward. As we can see, the reward an agent receives when choosing the pick-
up action in such a state depends on the action of the other agent. This
dependency can lead to variability in rewards (and consequently returns)
whenever the other agent follows a stochastic policy that sometimes leads
to successful and sometimes to unsuccessful cooperation. In contrast, in a
state where agents are not next to the goal object (Figure 6.1, left), agents
will always receive the same reward of zero no matter their actions and
actions of the other agent. This lack of variability in rewards in such states
indicates that there is no dependency on the actions of the other agent and,
thus, no potential for cooperation with the other agent.

We empirically validate that the variability in returns across the ensemble can
indeed indicate the potential for cooperation between agents, and that EMAX
with its exploration policy guides agents to explore states and actions that re-
quire cooperation more often that random exploration. By following the EMAX
exploration policy, agents are more likely to choose actions with potential for co-
operation in the current state, and more effectively navigate towards states with
such potential for cooperation (Section 6.4.2). We also provide an ablation of the
exploration policy of EMAX in which we replace it with a random exploration
policy. We show that agents trained with this ablation achieve lower returns
and learn less efficiently, indicating that the exploration policy is crucial for the
success of EMAX (Section 6.4.5).

In addition to its exploration strategy, EMAX leverages the ensemble to com-
pute target values as the average value estimate across the ensemble instead of
using target networks. These target values eliminate the need for additional tar-
get networks, and have been shown to exhibit lower variance, thereby stabilising
the optimisation of agents (Liang et al., 2022). Lastly, actions are selected using
a majority vote across the greedy actions of all value functions in the ensemble
during evaluation. This evaluation policy reduces the likelihood of suboptimal de-
cision making and, thus, improves the robustness of evaluation performance (Os-
band et al., 2016a). We empirically validate that the EMAX target computation

6.1. Ensemble Value Functions for Multi-Agent Exploration 103

reduces the variance of gradients throughout training (Section 6.4.1), and show
that the EMAX evaluation policy improves the robustness of the evaluation per-
formance (Section 6.4.3).

First, we extend independent DQN (Mnih et al., 2015; Tan, 1993) with EMAX
and evaluate it in 11 multi-agent tasks with sparse rewards. These environments
are mixed cooperative-competitive, i.e. agents receive individual rewards under
the POSG formalism (Section 2.4) but must cooperate with other agents in some
states. In this setting, EMAX improves the final evaluation returns of IDQN
by 185% across all tasks (Section 6.3). Afterwards, we focus on the coopera-
tive MARL setting and extend value decomposition methods of VDN (Sunehag
et al., 2018) and QMIX (Rashid et al., 2020b) with EMAX, and conduct an ex-
tensive evaluation of EMAX in common-reward multi-agent tasks. Overall, we
evaluate EMAX on top of three value-based MARL algorithms in 21 common-
reward tasks across four diverse multi-agent environments, and find that EMAX
improves sample efficiency and final achieved returns across all tasks over all three
extended algorithms (IDQN, VDN, QMIX) by 60%, 47%, and 538%, respectively
(Section 6.3). Lastly, we show that comparably small ensembles with five value
functions are sufficient to benefit from the advantages of EMAX, discuss the
computational cost of ensemble models (Section 6.4.4), and provide ablations to
understand the impact of the key ideas of EMAX (Section 6.4.5).

6.1 Ensemble Value Functions for Multi-Agent Ex-
ploration

In this section, we present ensemble value functions for multi-agent exploration
(EMAX), a general framework that trains an ensemble of value functions for each
agent in value-based MARL. Formally, each agent i trains an ensemble of K
value functions {Qk

i }K
k=1 with Qk

i being parameterised by θk
i . Each value function

is conditioned on agent i’s local observation-action history. EMAX leverages these
ensembles of value functions to guide the exploration of agents and stabilise their
optimisation. First, we introduce all components of IDQN with EMAX before
integrating value decomposition methods such as VDN and QMIX into EMAX.
Figure 6.2 illustrates the exploration policy and target computation of IDQN-
EMAX, and pseudocode for IDQN training with EMAX and EMAX evaluation

104 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

Agent i

...

Agent i

...

Figure 6.2: Illustration of IDQN-EMAX with (left) the UCB exploration strategy
for agent i, and (right) the target computation. The value functions of individual
agents are highlighted in green, the exploration policy computation in red, and target
aggregation in orange.

is shown in Algorithm 5 and Algorithm 6, respectively. Illustration of EMAX
value estimation and target computation with value decomposition is shown in
Figure 6.3, and pseudocode for QMIX with EMAX is shown in Algorithm 7.
The pseudocode for VDN with EMAX is analogous to the pseudocode for QMIX
with EMAX without the mixing network and computing the loss as defined in
Equation 6.7. As we will show in Section 6.4.4, we find that comparably small
ensembles with five value functions (K = 5) are sufficient to benefit from the
advantages of EMAX.

Exploration policy In multi-agent problems that require agents to cooperate to
achieve high returns, agents should focus their exploration on states and actions
that require cooperation. To guide agents to explore such states and actions,
EMAX agents follow a UCB policy akin to prior work (Lee et al., 2021; Liang
et al., 2022) using the average and standard deviation of value estimates across
the ensemble:

πexpl
i (ht

i; θi) ∈ arg max
ai∈Ai

Qmean
i (ht

i, ai; θi) + βQstd
i (ht

i, ai; θi) (6.1)

6.1. Ensemble Value Functions for Multi-Agent Exploration 105

with the average and standard deviation across the ensemble of value functions
of agent i defined as:

Qmean
i (ht

i, a
t
i; θi) = 1

K

K∑
k=1

Qk
i (ht

i, a
t
i; θk

i) (6.2)

Qstd
i (ht

i, a
t
i; θi) =

√√√√∑K
k=1

(
Qk

i (ht
i, a

t
i; θk

i)−Qmean
i (ht

i, a
t
i; θi)

)2

K
(6.3)

with θi = {θk
i }K

k=1 denoting the parameters of the ensemble of value functions
of agent i, and β > 0 denoting an uncertainty weighting hyperparameter chosen
in consideration of the scale of rewards and the amount of exploration required
for a task. This policy guides agents to explore actions that are promising (as
measured by the mean value estimate) and are likely to require more exploration
to reduce epistemic uncertainty or might need cooperation of multiple agents (as
measured by the standard deviation of value estimates). Similar strategies have
been applied in single-agent RL to guide exploration towards infrequently visited
states (e.g., Auer, 2002; Lee et al., 2021; Liang et al., 2022). In this chapter, we
argue that in multi-agent tasks the disagreement of value estimates across the
ensemble can also indicate whether state-action pairs require agent interactions
such as cooperation.

To see why, consider states in which multiple agents have to cooperate, i.e.
multiple agents need to select specific actions, to receive a large reward. If any
agent deviates from the required joint action, the agents receive no reward. In
such states, received rewards for a given action of agent i will vary significantly
whenever other agents follow stochastic policies, since the reward depends on the
actions of other agents. In contrast, in states where agent i receives identical
rewards independent of the action selection of the other agents, no such variabil-
ity of rewards is experienced. Due to this variability of rewards (or lack thereof),
value estimates across the ensemble will quickly converge in states that require no
or limited cooperation, and will exhibit high disagreement in states that require
cooperation. Therefore, the EMAX exploration policy focuses the exploration of
agents on state-action pairs that might require cooperation in contrast to com-
mon random exploration for value-based MARL such as ϵ-greedy policies. We
empirically demonstrate these benefits in Sections 6.4.2 and 6.4.5.

We consider this exploration policy an inductive bias towards exploring inter-
actions between agents and believe that such policies are particularly beneficial
in tasks that require cooperation across agents. In such tasks, any deviation of re-

106 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

turn estimates as a consequence of other agents’ actions likely indicates desirable
potential for cooperation. We note that the disagreement diminishes throughout
training as the learned value functions of agents converge and agents learn to re-
liably cooperate. Once agents always succeed at cooperating in a state with the
potential for cooperation, returns will no longer be variable, and the disagreement
of value estimates will reduce. Furthermore, we note that the disagreement of
value estimates incentivises not just the exploration of agent interactions in the
current state but also guide agents towards states with potential for future inter-
actions, since value functions estimate expected returns that are computed over
entire episodes. However, due to discounting in returns with a discount factor of
γ < 1, the exploration strategy will give more importance to exploring states and
actions that lead to near-term potential for agent interactions.

Optimisation To extend IDQN with EMAX, we optimise the k-th value function
of agent i by minimising the following loss:

L(θk
i) = E(ht

i,at
i,rt

i ,ht+1
i)∼D

[(
rt

i + γ max
ai∈Ai

Qmean
i (ht+1

i , ai; θi)−Qk
i (ht

i, a
t
i; θk

i)
)2
]

(6.4)

Computing target values as the average across all value estimates of the ensem-
ble (Liang et al., 2022) reduces the computational and memory cost of training
ensemble networks by eliminating the need for target networks and, as we empir-
ically show in Section 6.4.1, reduces the variability of gradients. Such reduced
variability of gradients improves the stability of training. Furthermore, we argue
that such improved stability of gradients during the optimisation is particularly
valuable in MARL where the exploration and non-stationarity of the policies of
other agents can otherwise result in unstable training, as observed in particular for
off-policy value-based MARL algorithms that EMAX is designed to extend (Sec-
tion 4.4).

Evaluation policy When evaluating agents, value-based MARL algorithms typ-
ically follow the greedy policy with respect to their value function. With EMAX,
agent i selects its action during evaluation using a majority vote across the greedy
actions of all models in its ensemble akin to prior work (Osband et al., 2016a):

πeval
i (ht

i; θi) ∈ arg max
ai∈Ai

K∑
k=1

[1]Ak
opt,i

(ai) (6.5)

Ak
opt,i = {ai ∈ Ai | ai ∈ arg max

a′
i

Qk
i (ht

i, a
′
i; θk

i)} (6.6)

6.1. Ensemble Value Functions for Multi-Agent Exploration 107

Algorithm 5 Training IDQN with EMAX
Initialise: {θk

i }K
k=1 of value functions {Qk

i }K
k=1 for each agent i ∈ I

Initialise: empty episodic replay buffer D ← ∅
for each episode do

Obtain initial state s0 ∼ µ and joint observation o0

for each step t = 0, · · · , T do
for each agent i ∈ I do

Select action at
i ∼ πexpl

i (ht
i; θi) (Equation 6.1)

end for
Apply joint action at = (at

1, . . . , a
t
N)

Receive next state st+1 ∼ T (st, at), rewards rt
i = Ri(st, at, st+1) for each

agent i ∈ I, and joint observation ot+1 ∼ O(st, at)
end for
Sample bootstrap masks {mk}K

k=1 from Bernoulli(p)
Store episode (s0:T ,h0:T , a0:T , r0:T , {mk}K

k=1) in D
for each agent i ∈ I do

for each model in the ensemble k = 1, . . . , K do
Sample batch of episodes B from D with mk = 1
Update θk

i by minimising L(θk
i) (Equation 6.4) averaged over each

time step t in B

end for
end for

end for

with indicator function [1]Ak
opt,i

(a) = 1 for the greedy action(s) of the k-th value
function of agent i, ai ∈ Ak

opt,i, and 0 otherwise. Such a policy decreases the
likelihood of taking poor actions because any individual value function preferring
a poor action due to errors in value estimates does not impact the action selection
as long as the majority of models agree on the optimal action. We empirically
demonstrate the benefits of such an evaluation policy in Section 6.4.3.

Ensemble value functions Motivated by previous work in cooperative MARL
(e.g., Papoudakis et al., 2021; Christianos et al., 2021; Albrecht et al., 2024) that
shares networks across agents to improve sample efficiency and scalability, also
demonstrated in Section 4.3.3, and the computational cost of training K value

108 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

Algorithm 6 Evaluating with EMAX
Require: Trained ensemble of value functions {Qk

i }K
k=1 for each agent i ∈ I

Obtain initial state s0 ∼ µ and joint observation o0

for each step t = 0, · · · , T do
for each agent i ∈ I do

Select action at
i ∼ πeval

i (ht
i; θi) (Equation 6.6)

end for
Apply joint action at = (at

1, . . . , a
t
N)

Receive next state st+1 ∼ T (st, at), rewards rt
i = Ri(st, at, st+1) for each

agent i ∈ I, and joint observation ot+1 ∼ O(st, at)
end for

functions for each agent, we share a single ensemble of value functions across
all agents. All aforementioned techniques rely on value functions within the
ensemble to be sufficiently diverse, in particular early in training. To ensure such
diversity, we implement the K value functions within the ensemble as entirely
separate networks with no sharing of parameters across the value functions in the
ensemble. To efficiently compute the value estimates of all value functions and all
agents in a single forward pass, we vectorise the computation across agents and
networks within the ensemble. Beyond separate networks within the ensemble,
we employ three techniques from prior work (Osband et al., 2016a; Liang et al.,
2022) to incentivise diversity of value functions within the ensemble: (1) Ensemble
models are separately and randomly initialised. (2) We sample separate batches
of experiences from the replay buffer to train each model in the ensemble.(3) Each
model is trained on bootstrapped samples of the entire experience collected.

For the boostrapped sampling process, we follow the methodology of Osband
et al. (2016a) to draw bootstrapped samples for each model as subsets of the
entire training experiences to train on. More specifically, we draw a Bernoulli
mask {mk}K

k=1 for each model in the ensemble whenever an episode is added to
the episodic replay buffer. This mask determines whether the k-th model within
the ensemble is trained on this episode (mk = 1) or not (mk = 0). Each mask
is drawn from a Bernoulli distribution with probability p of being 1 and 1 − p

of being 0, i.e. mk ∼ Bernoulli(p). For p = 1, each episode would be used to
train each model in the ensemble so all models in the ensemble would receive the
same training data. In contrast for a small p, the training data is likely to be

6.1. Ensemble Value Functions for Multi-Agent Exploration 109

Agent 1

...

Agent N

...

...

Value Aggregation

...

Agent 1

...

Agent N

...

...

Value Aggregation

Figure 6.3: Illustration of EMAX with value decomposition algorithms. (left) The
value estimation and (right) target computation with value decomposition. The value
functions of individual agents are highlighted in green, value decomposition in blue,
and target aggregation in orange.

diverse across models in the ensemble but each model would also only be trained
on a small subset of the episodes which might sacrifice learning efficiency. In our
experiments, we adopt to use p = 0.9 but similar to prior work (Osband et al.,
2016a) we have not found the choice of p to significantly affect the performance
of our algorithm.

Value decomposition So far, we presented EMAX as an extension of IDQN. We
now discuss the extension of value decomposition algorithms for common-reward
tasks with EMAX. Cooperative multi-agent tasks are often formalised with com-
mon rewards (Section 2.5). In this setting, agents might frequently receive re-
wards despite not having contributed to them. Identifying the contribution of
individual agents to the received common reward is known as the multi-agent
credit assignment problem (Sunehag et al., 2018; Du et al., 2019; Rashid et al.,
2020b). In EMAX, this problem has the additional implication that the explo-
ration policy defined in Equation 6.1 does not distinguish which agents need to
cooperate in a particular state. This is problematic and might lead to undesirable
exploration. Consider the following example of a task with three agents in which
two agents cooperate in a state to receive a large reward but the third agent did
not contribute to such reward. However, all agents receive the same large reward
and, consequently, the third agent under the EMAX exploration policy might
follow this reward that depended on the actions of other agents in the belief that

110 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

Algorithm 7 Training QMIX with EMAX
Initialise: parameters {θk

i }K
k=1 of value functions {Qk

i }K
k=1 for each agent i ∈ I

Initialise: parameters θmix and θmix of the main and target mixing networks
Initialise: empty episodic replay buffer D ← ∅
for each episode do

Obtain initial state s0 ∼ µ and joint observation o0

for each step t = 0, · · · , T do
for each agent i ∈ I do

Select action at
i ∼ πexpl

i (ht
i; θi) (Equation 6.1)

end for
Apply joint action at = (at

1, . . . , a
t
N)

Receive next state st+1 ∼ T (st, at), reward rt = R(st, at, st+1), and joint
observation ot+1 ∼ O(st, at)

end for
Sample bootstrap masks {mk}K

k=1 from Bernoulli(p)
Store episode (s0:T , h0:T , a0:T , r0:T , {mk}K

k=1) in D
for each model in the ensemble k = 1, . . . , K do

Sample batch of episodes B from D with mk = 1
Update θk and θmix by minimising L(θk) (Equation 6.8) averaged over

each time step t in B with QMIX targets (Equation 6.9)
end for
In a set interval, update target mixing network θmix ← θmix

end for

it indicates the potential for cooperation with other agents. To overcome this
challenge and to make sure that the EMAX exploration policy guides each agent
towards states and actions in which that particular agent’s cooperation, rather
than any agents’ cooperation, is required, it is important that the value estimates
of that agent correspond to its individual contribution to the common rewards.

Value decomposition algorithms such as VDN (Sunehag et al., 2018) and
QMIX (Rashid et al., 2020b) are specifically designed to address the multi-agent
credit assignment problem by learning such individual value functions for each
agent that identify their contribution to received common rewards. By integrat-
ing these techniques into EMAX, the exploration policy can benefit from the
multi-agent credit assignment achieved by the value decomposition, and the op-

6.2. Experimental Setup 111

timisation of the value functions can be stabilised by computing target estimates
across the ensemble as proposed in EMAX. To integrate value decomposition
methods into EMAX, each agent trains an ensemble of independent utility func-
tions as proposed above. The total loss for the k-th utility functions of all agents
with parameters θk = {θk

i }i∈I when using VDN is given by

L(θk) = E(ht,at,rt,ht+1)∼D

(rt + γ
∑
i∈I

max
ai∈Ai

Qmean
i (ht+1

i , ai; θi)−
∑
i∈I

Qk
i (ht

i, a
t
i; θk

i)
)2

(6.7)
and for QMIX is defined as follows:

L(θk) = E(ht,st,at,rt,ht+1,st+1)∼D
[(
rt + γytot−

fmix
(
Qk

1(ht
1, a

t
1; θk

1), . . . , Qk
N(ht

N , a
t
N ; θk

N); θmix
))2

]
(6.8)

with target value

ytot = fmix

(
max
a1∈A1

Qmean
1 (ht+1

1 , a1; θ1), . . . , max
aN ∈AN

Qmean
N (ht+1

N , aN ; θN); θmix

)
(6.9)

For QMIX, we use a single mixing network and target mixing network with pa-
rameters θmix and θmix, respectively, to aggregate the utility estimates for all
utility functions in the ensemble. We consider both VDN and QMIX for our
experimence since the aggregation of QMIX is able to represent a wider set of
centralised value functions, but VDN has been shown to be more sample efficient
in tasks that do not seem to require a non-linear aggregation as discussed in
Section 4.4.

6.2 Experimental Setup

We conduct two evaluations to assess the efficacy of EMAX in multi-agent en-
vironments. First, we focus on mixed-objective environments under the POSG
formalism (Section 2.4), in which all agents receive individual rewards. In this
setting, we evaluate IDQN with and without EMAX. Second, we evaluate EMAX
as an extension of IDQN as well as value decomposition approaches VDN and
QMIX in common-reward environments under the Dec-POMDP formalism (Sec-
tion 2.5).

Mixed-objective evaluation In the mixed-objective evaluation, we compare
IDQN with and without EMAX in 11 multi-agent tasks of the level-based foraging

112 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

(a) LBF (b) BPUSH (c) RWARE (d) MPE

Figure 6.4: Visualisations of four multi-agent environments: (a) level-based foraging
(LBF), (b) boulder-push (BPUSH), (c) multi-robot warehouse (RWARE), and (d)
multi-agent particle environment (MPE).

(LBF) (Albrecht and Ramamoorthy, 2013; Papoudakis et al., 2021) and multi-
robot warehouse (RWARE) environments (Christianos et al., 2020; Papoudakis
et al., 2021). These tasks were selected due to their mixture of cooperation and
competition in the setting with individual rewards. In LBF, agents are incen-
tivised to collect all items that they can collect by themselves as fast as possible,
to receive their reward by themselves and not share it with other agents. For
items of sufficiently high level, agents need to cooperate to pick it up and collect
their rewards. In RWARE, agents are rewarded for collecting and delivering re-
quested shelves. Cooperation in RWARE might constitute agents giving way to
each other to avoid agents blocking each others’ path. In contrast to LBF, the
successful cooperation and resolution of such situations does not lead to immedi-
ate rewards for any agent but enables further rewards in the episode by allowing
agents to deliver more shelves after the resolution. Both environments are visu-
alised in Figure 6.4. For detailed descriptions of both environments, we refer to
Section 4.1.

Common-reward evaluation In the common-reward evaluation, we conduct
a large evaluation comparing a total of eleven MARL algorithms in 21 tasks
across four multi-agent environments. We compare IDQN, VDN, and QMIX
as well as their extensions with EMAX, which we will denote IDQN-EMAX,
VDN-EMAX, and QMIX-EMAX, respectively, three value-based exploration algo-
rithms in MAVEN (Mahajan et al., 2019), CDS (Li et al., 2021a), and EMC (Zheng
et al., 2021), and independent and multi-agent PPO (IPPO and MAPPO) that
have been shown to exhibit strong MARL performance (Papoudakis et al., 2021;

6.2. Experimental Setup 113

Yu et al., 2022). We consider 21 common-reward tasks across four multi-agent en-
vironments: eight level-based foraging (LBF) tasks, four boulder-push (BPUSH)
tasks (Christianos et al., 2023), six multi-robot warehouse (RWARE) tasks, and
three multi-agent particle environment (MPE) tasks (Mordatch and Abbeel, 2018;
Lowe et al., 2017). These tasks were selected since they represent a diverse set
of cooperative MARL tasks which require agents to cooperate to achieve high re-
wards. Many of these tasks are further considered challenging exploration tasks
due to sparse rewards. All environments are visualised in Figure 6.4. For detailed
descriptions of LBF, RWARE, and MPE, we refer to Section 4.1, and we provide
a more detailed description of BPUSH below. We hypothesise that EMAX is
particularly well suited for this common-reward setting due to its exploration
policy focusing on states and actions with the potential for cooperation with
other agents.

In the boulder-push environment (BPush) (Christianos et al., 2023), agents
need to navigate a grid-world to move a boulder to a target location. Agents
observe the location of the boulder, all other agents, and the direction the boul-
der needs to be pushed in. The action space of all agents consists of the same
discrete actions A = {move up,move down,move left,move right}. Agents only
receive rewards of 0.1 per agent for successfully pushing the boulder forward in its
target direction, which requires cooperation of all agents, and a reward of 1 per
agent for the boulder reaching its target location. Unsuccessful pushing of the
boulder by some but not all agents leads to a penalty reward of −0.01. Episodes
terminate after the boulder reached its target location or after at most 50 time
steps. BPUSH tasks considered in this chapter vary in the size of the grid-world
and the number of agents varying between two and four.

Evaluation metrics We report the mean evaluation returns as well as 95% confi-
dence intervals computed over five runs in all individual tasks across both settings.
In common-reward tasks, we report the returns computed over the common re-
wards, and in mixed-objective tasks we report the sum of all agents’ evaluation
returns. Following Agarwal et al. (2021), we report aggregated normalised evalua-
tion returns and performance profiles with the interquartile mean (IQM) and 95%
confidence intervals computed over all tasks in each setting. The learning curves
indicate the sample efficiency of agents, which is largely determined by their
ability to effectively explore the environment, and performance profiles allow to

114 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

compare the distribution of final evaluation returns indicating the robustness of
the final policies learned by each algorithm. We normalise returns between the
minimum (0) and maximum (1) achieved returns following Equation 4.1.

To evaluate the training stability of algorithms, we would like to capture how
variable and noisy gradients are throughout training. To measure this variability,
we first detrend gradient norms throughout training by deducting each stored
gradient norm from its subsequent norm, and compute the conditional value at
risk (CVaR) of detrended gradient norms:

CVaR(g′) = E [g′ | g′ ≥ VaR95%(g′)] and g′
t = |∇t+1| − |∇t| (6.10)

where the value at risk (VaR) corresponds to the value at the 95% quantile of
all detrended gradient norm values. This metric corresponds to the short-term
risk across time suggested by Chan et al. (2020) and indicates the stability of
gradients throughout training. A larger CVaR value indicates more variability
in gradients which can indicate unstable training, while a smaller CVaR value
indicates less variability in gradients and more stable training.

Implementation details We provide details on conducted hyperparameter opti-
misation and used hyperparameters across all evaluations in Appendix C.1. Fur-
thermore, we note that across all experiments agents share network parameters
with each other due to its established benefits for sample efficiency (as shown
in Section 4.3.3). To allow for agent specialisation, shared networks receive the
agent identity as additional input in the form of a one-hot vector. EMAX uses
ensembles with K = 5 value functions unless stated otherwise.

Computational resources All experiments were conducted on (1) desktop com-
puters with two Nvidia RTX 2080 Ti GPUs, Intel i9-9900X @ 3.50GHz CPU,
62GB RAM, running Ubuntu 20.04, (2) two server machines with four Nvidia
V100 GPUs, Intel Xeon Platinum 8160 @ 2.10GHz CPU, 503GB RAM, running
CentOS Linux 7 OS, and (3) one server machine with Nvidia RTX A4500 GPUs,
an AMD EPYC 7763 CPU with 64 cores at up to 3.6GHz, 1TB RAM, running
Ubuntu 22.04. The speedtest for varying ensemble sizes reported in Table 6.1 has
been conducted on the desktop computer.

6.3. Evaluation Results 115

IDQN + EMAX (ours)

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
re

tu
rn

s

(a) LBF – Normalised

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ise

d
re

tu
rn

s

(b) RWARE – Normalised

0.0 0.2 0.4 0.6 0.8 1.0
Normalised evaluation returns (τ)

0.0

0.2

0.4

0.6

0.8

1.0

P(
re

tu
rn

s)
>
τ

(c) Performance profile

Figure 6.5: Normalised evaluation returns throughout training of IDQN with and
without EMAX across mixed-objective (a) LBF and (b) RWARE tasks, and (c) per-
formance profiles across all 11 mixed-objective tasks. Lines and shading represent the
interquartile mean and 95% confidence intervals of evaluation returns, respectively.

6.3 Evaluation Results

First, we evaluate IDQN with and without EMAX in 11 mixed-objective tasks
of the LBF and RWARE environments. Figure 6.5 shows the learning curves
with normalised evaluation returns throughout training across all mixed-objective
tasks in the respective environments, and the performance profile at the end of
training. Across all 11 tasks, EMAX improves final evaluation returns of IDQN
by 189%, with 105% improvement in LBF and 274% improvement in RWARE.
From the performance profile, we also see that EMAX significantly improves
the robustness of IDQN across all tasks. We provide learning curves for each
individual task in Appendix C.2.

Following the same evaluation protocol, we then evaluate EMAX on top of
IDQN, VDN, and QMIX across 21 common-reward tasks. Figure 6.6 visualises
the learning curve and performance profile of evaluation returns of all algorithms.
Similar to our evaluation in mixed-objective tasks, EMAX substantially improves
final evaluation returns of IDQN, VDN, and QMIX in common-reward tasks,
shown in Figure 6.6a, by 60%, 47%, and 538%, leading to higher final returns
compared to their baselines in 18, 16, and 20 out of 21 tasks, respectively. These
results arise from EMAX improving the sample efficiency and learning stability
of the extended algorithms, as we will show in Section 6.4. Additionally, QMIX-
EMAX is able to learn effective policies in several hard exploration tasks where
QMIX fails to achieve any reward. From the performance profile in Figure 6.6b

116 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0.00

0.25

0.50

0.75

1.00

No
rm

al
ise

d
re

tu
rn

s

IDQN VDN QMIX

Timesteps

(a) Normalised evaluation returns

0.0 0.5 1.0
0.00

0.25

0.50

0.75

1.00

P(
re

tu
rn

s)
>
τ

IDQN

0.0 0.5 1.0

VDN

0.0 0.5 1.0

QMIX

Normalised evaluation returns (τ)

(b) Performance profile

Figure 6.6: (a) Normalised evaluation returns throughout training and (b) perfor-
mance profile of all algorithms aggregated across all 21 tasks. EMAX (orange) sig-
nificantly improves the sample efficiency and final achieved returns of all algorithms.
Lines and shading represent the interquartile mean and 95% confidence intervals of
evaluation returns, respectively, aggregated over five runs for every task, for a total
of 105 runs per algorithm.

we also see the distribution of evaluation returns at the end of training across
all algorithms and tasks, indicating the improved robustness with EMAX across
all tasks. We provide normalised evaluation returns for each environment in
Figure 6.7, as well as learning curves in all individual tasks in Appendix C.3.

In LBF, EMAX significantly improves the performance of QMIX whereas mi-
nor improvements can be seen for IDQN and VDN in the common-reward setting,
and significant gains are observed in the mixed-objective setting. Inspecting learn-
ing curves in individual tasks (Appendix C.3.1) shows that QMIX, MAVEN, CDS
and EMC fail to achieve any rewards in several LBF tasks with particularly sparse
rewards. We hypothesise that these algorithms suffer from the large dimension-
ality of the joint observation as input to the mixing network which is inefficient
to train with the sparse learning signal of these tasks. The uncertainty-guided
exploration of EMAX seems to alleviate these inefficiencies.

A similar trend can be observed in BPUSH where, most notably, VDN-EMAX
and QMIX-EMAX learn to solve a BPUSH task with four agents in which no
baseline demonstrates any positive rewards (see Figure C.3d). To successfully
solve this task, all agents need to cooperate with any miscoordination leading to
negative rewards. CDS performs best among all baselines but still worse than
VDN and QMIX with EMAX, and IPPO and MAPPO fail to learn in all tasks.
BPUSH and LBF are both challenging exploration tasks with sparse rewards and

6.3. Evaluation Results 117

Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

No
rm

al
ise

d
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(a) LBF

0.0 0.5 1.0
1e7

0.00

0.25

0.50

0.75

1.00

No
rm

al
ise

d
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(b) BPUSH

0.0 0.5 1.0
1e7

0.00

0.25

0.50

0.75

1.00

No
rm

al
ise

d
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(c) RWARE

0 1 2
1e6

0.6

0.8

1.0

No
rm

al
ise

d
re

tu
rn

s

IDQN

0 1 2
1e6

VDN

0 1 2
1e6

QMIX

Timesteps

(d) MPE

Figure 6.7: Interquartile mean and 95% confidence intervals of normalised evaluation
returns for all algorithms in each environment.

many states where agents clearly need to cooperate to achieve high returns, e.g.
by moving the boulder in BPUSH or collecting high-level items in LBF. EMAX
significantly improves the sample efficiency and final performance in these tasks,
indicating its ability to guide the multi-agent exploration towards states and
actions with the potential for cooperation.

In RWARE, consistent with prior work (Papoudakis et al., 2021), indepen-
dent learning value-based algorithms outperform centralised value decomposition
methods due to highly sparse rewards in the common-reward setting. IDQN-
EMAX outperforms all baselines across four RWARE tasks with larger ware-
houses, and IDQN-EMAX and VDN-EMAX both significantly improve upon
their extended baselines in all RWARE tasks, achieving 330% and 252% higher
final evaluation returns, respectively, whereas QMIX with and without EMAX
fail to learn. Lastly, IPPO and MAPPO perform well in RWARE with MAPPO
reaching highest evaluation returns in two smaller RWARE tasks. However, in
tasks with larger warehouses and, thus, more required exploration, IDQN-EMAX
outperforms all other algorithms. It is worth highlighting that no value-based al-
gorithm achieved non-zero rewards in this environment within four million time
steps of training in prior evaluations (Papoudakis et al., 2021). To the best of

118 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

our knowledge, IDQN-EMAX is the first algorithm that outperforms actor-critic
methods like IPPO and MAPPO in RWARE tasks. We further note that RWARE,
in contrast to LBF and BPUSH, contains many states in which agents need to
cooperate by giving way to other agents. Without doing so, agents block each
others’ paths and, thereby, limit the evaluation returns the team can achieve.
However, successful cooperation to give way does not directly lead to a reward
signal since agents only receive rewards for delivering requested shelves. Due
to efficacy of EMAX in RWARE tasks, we hypothesise that EMAX appears to
be able to successfully guide agents towards such cooperative states, even if the
reward for successful cooperation are only received in future time steps. Simi-
lar benefits are also observed for IDQN with EMAX in mixed-objective RWARE
tasks in which EMAX improves final evaluation returns by 274%.

Lastly, we evaluate in three common-reward tasks of the MPE environment.
In contrast to other environments, MPE features continuous observations and
dense rewards. Furthermore, the adversary and predator-prey tasks contain
stochastic transitions due to the adversarial agent being controlled by a pre-
trained policy. In all three MPE tasks, we see improvements in sample effi-
ciency and final performance for algorithms with EMAX compared to extended
algorithms, even if the improvements are less severe than in the other environ-
ments that feature sparse rewards. In particular in the MPE spread task, EMAX
significantly improves the performance of all extended algorithms by significant
margins. It is also worth highlighting that despite the stochasticity of the environ-
ment transitions in the predator-prey and adversary tasks, EMAX still improves
the performance of the baselines. This indicates that EMAX is able to effectively
guide the exploration even in environments with stochastic transitions.

6.4 Analysis and Ablations

In this section, we further investigate the efficacy of all components of EMAX to
study our hypotheses from Section 6.1:

1. EMAX targets reduce the variability of gradients during training.

2. The EMAX exploration policy leads to more exploration of states and ac-
tions with the potential for cooperation.

6.4. Analysis and Ablations 119

0.0

0.2

0.4

0.6

0.8

1.0

CV
aR

(g
ra

di
en

t n
or

m
)

Standard
+ EMAX (ours)

(a) Mixed-objective tasks

IDQN VDN QMIX
0.00

0.25

0.50

0.75

1.00

1.25

CV
aR

(g
ra

di
en

t n
or

m
)

1e−1

Standard
+ EMAX (ours)

(b) Common-reward tasks

Figure 6.8: Average and standard error of the conditional value at risk (CVaR) of
detrended consecutive gradient norms of (a) IDQN with and without EMAX across
11 mixed-objective and (b) IDQN, VDN, and QMIX with and without EMAX across
21 common-reward tasks.

3. The EMAX evaluation policy reduces the likelihood of selecting sub-optimal
actions.

After answering these questions, we provide further ablations of these techniques,
show that comparably small ensembles of value functions are sufficient to achieve
the benefits of EMAX, and that baselines even with networks of comparable size
to EMAX do not achieve the same benefits.

6.4.1 Training Stability

In Section 6.1, we stated that the computation of EMAX target values reduces
the variability of gradients during training, and, thus, improves stability of the
optimisation (as previously observed in single-agent RL (Liang et al., 2022)). To
demonstrate this stabilising effect, Figure 6.8 visualises the average and stan-
dard error of the stability of gradients measured by the conditional value at risk
(CVaR) of gradient norms computed for IDQN with and without EMAX across 11
mixed-objective tasks (Figure 6.8a) as well as for IDQN, VDN, QMIX with and
without EMAX across all 21 common-reward tasks (Figure 6.8b). We observe
that the target computation of EMAX significantly reduces the CVaR of gradi-
ent norms for all algorithms in both settings, indicating more stable optimisation,
thus, confirming our hypothesis. The difference for QMIX in the common-reward
setting is less pronounced as for other algorithms since the base algorithm fails

120 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

Standard + EMAX (ours)

0.0 2.5 5.0
1e6

0.0

0.2

0.4

0.6

0.8

1.0
Ev

al
ua

tio
n

re
tu

rn
s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(a) Evaluation returns

0.0 2.5 5.0
Timesteps 1e6

2.0

2.5

3.0

3.5

Av
er

ag
e

ag
en

t-f
oo

d
di

st
an

ce IDQN

0.0 2.5 5.0
Timesteps 1e6

VDN

0.0 2.5 5.0
Timesteps 1e6

QMIX

(b) Food distances
Baseline + EMAX (single greedy) + EMAX (UCB greedy; ours)

0.0 2.5 5.0
Timesteps 1e6

0

20

40

60

80

100

Co
op

er
at

iv
e

pi
ck

-u
p

ra
te IDQN

0.0 2.5 5.0
Timesteps 1e6

VDN

0.0 2.5 5.0
Timesteps 1e6

QMIX

(c) Cooperation percentage

No-op Movement Pick-up

0.0 2.5 5.0
Timesteps 1e6

0.2

0.4

0.6

0.8

En
se

m
bl

e
Q-

va
lu

es
 st

d IDQN

0.0 2.5 5.0
Timesteps 1e6

VDN

0.0 2.5 5.0
Timesteps 1e6

QMIX

(d) Ensemble Q-value std

Figure 6.9: (a) Mean and 95% bootstrapped confidence intervals of evaluation returns,
(b) mean and standard deviation of average food distances across rollouts, (c) mean
and standard deviation of percentages of agents selecting the pick-up action and in
states with a chance for cooperation in the LBF 10x10-3p-5f task, and (d) the standard
deviation of action-value estimates for no-op, movement, and pick-up actions in states
with a chance for cooperation in the LBF 10x10-3p-5f task with common rewards.

to learn in several tasks, leading to little training with low gradient variability
independent of the target values.

6.4.2 Exploration Policy

To validate our hypothesis that the EMAX exploration policy leads to more
exploration of states and actions with the potential for cooperation (Section 6.1),
we train IDQN, VDN, and QMIX with and without EMAX in the LBF 10x10-
3p-5f task with common rewards where agents need to cooperate to pick up some
of the food items. Figure 6.9 shows the evaluation returns throughout training,
the average distances of agents to the closest food, and the percentage of agents
selecting the pick-up action in states where multiple agents need to cooperate to
pick up food. To obtain the average distances to nearby food and cooperation
percentages, we rollout the exploration policy of the baseline algorithm and the

6.4. Analysis and Ablations 121

EMAX UCB exploration policy in the LBF task for 50 episodes every 200,000 time
steps of training, and compute the respective values across rollouts. We emphasise
that a lower average distance of agents to the closest food and a higher percentage
of selecting the pick-up action in cooperative states indicates that agents seek
out states with the potential for cooperation and prefer to apply actions with the
chance for cooperation, respectively. Figure 6.9 shows that our hypotheses about
the EMAX exploration policy hold in the tested task:

1. Agents following the EMAX exploration policy seek out states with the
potential for cooperation more often compared to the baseline following a
random exploration policy, as indicated by the lower average distance of
EMAX agents to food items compared to the baseline in Figure 6.9b.

2. Agents following the EMAX exploration policy are more likely to select
the pick-up action in states with potential for cooperation, as shown in
Figure 6.9c.

Together, these effects lead to EMAX agents learning significantly more efficiently
and achieving higher evaluation returns compared to the baseline (Figure 6.9a).

To separate the effect of the efficacy of the EMAX training and the exploration
policy, we also compare to the percentage of choosing to pick up in cooperative
states by greedily following any of the value functions in the ensemble instead
of following the UCB policy across the ensemble. While this ablation leads to
a significant improvement over the extended algorithms, it still exhibits a lower
rate of choosing to cooperate compared to the EMAX exploration policy.

Lastly, Figure 6.9d visualises the standard deviation of action-value estimates
across the ensemble for the no-op action, movement actions, and the pick-up
action in states with the potential for cooperation between agents. This plot
shows that the deviation of value estimates across the ensemble for all types of
actions is similar early in training but as training progresses and agents some-
times cooperate successfully and sometimes fail to cooperate, the deviation for
the pick-up action with potential for cooperation rises higher than the devia-
tion for other actions in states with the potential for cooperation. Furthermore,
alongside Figure 6.9a showing evaluation returns, we can see that once agents
successfully cooperate most of the time, the standard deviation for the pick-up
action starts to reduce. For QMIX with EMAX, we can see that this reduction
ends in the standard deviation of action values for the cooperative pick-up action

122 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

Standard + EMAX (ours) + EMAX (single model)

0.0 2.5 5.0
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

Ev
al

ua
tio

n
re

tu
rn

s
IDQN

0.0 2.5 5.0
Timesteps 1e6

VDN

0.0 2.5 5.0
Timesteps 1e6

QMIX

(a) Evaluation policy analysis

0 5
Timesteps 1e6

0.0

2.5

5.0

7.5

10.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 5
Timesteps 1e6

VDN

0 5
Timesteps 1e6

QMIX
Baseline
+ EMAX (K= 2)
+ EMAX (K= 5)
+ EMAX (K= 8)

(b) Ensemble size analysis

Figure 6.10: (a) Evaluation returns for the baselines and EMAX algorithms in the
LBF 10x10-4p-4f-coop task with common rewards, and an ablation of the evaluation
policy. For the single model ablation, the agents follow the greedy policy with respect
to a single value function within their model instead of computing a majority vote
across greedy policies. (b) Evaluation returns for varying ensemble sizes K ∈ {2, 5, 8}
in the RWARE 11× 10 4ag task.

and non-cooperative actions reaching similar levels once close-to-optimal perfor-
mance is reached since now agents almost always cooperative successfully. This
further indicates that, as desired, EMAX incentivises exploration of cooperative
actions as long as such cooperation is not reliably achieved yet, but such bias
towards cooperative actions diminishes as the policy starts to reliably cooperate
successfully.

6.4.3 Evaluation Policy

The evaluation policy of EMAX selects actions by a majority vote across all
policies in the ensemble (Equation 6.6). We hypothesised that such a policy is
more robust to sub-optimal action selection since any individual policy taking
sub-optimal actions does not impact the executed policy as long as the majority
of policies agree on the optimal action. Figure 6.10a shows the evaluation returns
of IDQN, VDN, and QMIX with and without EMAX in the LBF 10x10-4p-4f-
coop task with common rewards. For EMAX, we show the evaluation policy
using majority voting (ours) as well as an ablation following the greedy policy
with respect to any of the individual value functions within the ensemble (single
model). We highlight that no further agents were trained, but we directly extract
the individual value functions within the ensemble and evaluate them, so the only
difference in the EMAX single policy ablation and ours is the followed policy, not

6.4. Analysis and Ablations 123

the underlying value functions. This experiment indicates the improved robust-
ness of our majority voting to select actions leading to higher evaluation returns
in a task that frequently requires agents to cooperate.

6.4.4 Ensemble Size

The computational cost of training an ensemble of models scales with the ensem-
ble size K. To illustrate the additional cost, we investigate the training speed of
EMAX for varying K and pose the question of how many models are needed in the
ensemble to benefit from the improved training stability and exploration. To in-
vestigate this question, we evaluate all algorithms with varying K in the RWARE
11x10 task with four agents (Figure 6.10b), in which EMAX led to substantial
improvements for IDQN and VDN. In this task, we observe that the benefits
of larger ensemble models saturate at K = 5. EMAX with K = 8 performs
identical or worse for all algorithms, and the smaller ensemble K = 2 reaches
lower returns for IDQN and VDN. These results suggest that a comparably small
ensemble with K = 5 can significantly improve sample efficiency with EMAX.
Additionally, we hypothesise that larger ensemble value functions may require
more data to train, thus leading to diminishing benefits for ensembles of many
value functions. Table 6.1 shows the average time to train IDQN, VDN, QMIX,
and their corresponding EMAX extensions with K ∈ {2, 5, 8} for 10,000 time
steps in the LBF 10x10-3p-3f task. These times were averaged across ten runs.
We can see that training an ensemble of K = 5 value functions, as applied in our
evaluation, increases the training time by less than 100%. While this cost is sig-
nificant, the increase in computational cost is notably less than a linear increase
due to parallelisation on modern hardware, and we believe that it is justified in
cases where the significant improvements of EMAX in both sample efficiency and
stability are of importance.

To further investigate whether the performance benefits of EMAX arise solely
due to its larger number of learnable parameters compared to the baselines algo-
rithms, we evaluate all baselines with larger network sizes. We keep the overall
architecture of networks identical, so all value function networks consist of one
hidden layer projecting the input observations to a hidden size of dh, followed
by a gated recurrent unit (GRU) (Cho et al., 2014) with identical hidden di-
mensionality, and a final linear layer projecting the hidden output state of the

124 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

Table 6.1: Average training time (in seconds) for baselines and EMAX algorithms
with varying ensemble sizes K to complete 10,000 time steps of training in the LBF
10x10-3p-3f task. Relative increase to the training time of the baseline algorithm
(K = 1) is given in parenthesis. Times are averaged across ten runs.

Algorithm Baseline K = 2 K = 5 K = 8

IDQN 16.80 21.29 (+27%) 33.04 (+97%) 48.06 (+186%)
VDN 16.92 21.56 (+27%) 33.25 (+97%) 48.16 (+185%)
QMIX 17.70 22.53 (+27%) 33.71 (+90%) 48.66 (+175%)

Table 6.2: Observation dimensionality and the resulting number of parameters within
the main value function networks for baseline algorithms with hidden sizes of 128,
256, and 512, as well as for EMAX with K = 5 models in the ensemble and hidden
size of 128 for one LBF and RWARE task.

Task |o| |Ai| Base (128) Base (256) Base (512) EMAX (K = 5)

LBF 10x10-4p-3f-coop 25 6 103,174 402,950 1,592,326 515,870
RWARE 11× 20 4ag 95 5 112,005 420,613 1,627,653 560,025

GRU to action-values for each action with the dimensionality of the action space
of an individual agent i, i.e. |Ai|. We evaluate the baselines with hidden sizes
of dh ∈ {128, 256, 512} and compare their performance to EMAX with K = 5
models in the ensemble and hidden size of 128. The number of total parame-
ters resulting from these models for one LBF and one RWARE task are shown
in Table 6.2. As we can see, EMAX with K = 5 (and hidden size of 128) has
exactly five times more parameters in the model compared to the baseline with
one model with hidden size of 128. The baseline model with hidden size of 256
is comparable to the model size of EMAX while the baseline model with hidden
size of 512 is roughly three times larger than the ensemble of EMAX.

Figure 6.11 shows the evaluation returns of all baseline algorithms for varying
model sizes compared to EMAX with K = 5 models in the ensemble in one LBF
and one RWARE task. As we can see, the baselines are unable to make effective
use of larger networks and reach similar evaluation returns to the original base-
line with hidden sizes of 128 despite four times and fifteen times more parameters
in the model. Despite these larger networks, the baseline algorithms are unable

6.4. Analysis and Ablations 125

Baseline (128 hidden) Baseline (256 hidden) Baseline (512 hidden) + EMAX

0 2 4
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 2 4
Timesteps 1e6

VDN

0 2 4
Timesteps 1e6

QMIX

(a) LBF 10x10-4p-3f-coop

0 5
Timesteps 1e6

0.0

2.5

5.0

7.5

10.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 5
Timesteps 1e6

VDN

0 5
Timesteps 1e6

QMIX

(b) RWARE 11× 20 4ag

Figure 6.11: Mean and 95% confidence intervals of evaluation returns for all baseline
algorithms with default and larger network sizes, and EMAX extensions.

Standard + EMAX + EMAX (ε-greedy) + EMAX (target networks)

0 2 4
Timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 2 4
Timesteps 1e6

VDN

0 2 4
Timesteps 1e6

QMIX

(a) Ablations in LBF 10x10-4p-3f-coop.

0 1 2
Timesteps 1e6

−300

−250

−200

−150

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 1 2
Timesteps 1e6

VDN

0 1 2
Timesteps 1e6

QMIX

(b) Ablations in MPE spread.

Figure 6.12: Mean and 95% confidence intervals of evaluation returns for all base-
lines and EMAX algorithms and two ablations in (a) LBF 10x10-4p-3f-coop, and (b)
MPE spread. For the ablations, we replace the UCB exploration policy with ϵ-greedy
exploration (green) and the EMAX target computation with standard target networks
(purple), respectively.

to reach the performance of EMAX with K = 5 models in the ensemble. This
suggests that the ensemble in EMAX and its use in the exploration policy, eval-
uation policy, and target computation is important to make effective use of the
increase in parameters and EMAX does not outperform the baselines due to its
larger computational budget.

6.4.5 Ablations

We already demonstrated that the EMAX target computation and exploration
policy lead to more robust gradients during optimisation and focus exploration
on cooperative actions. To discriminate the importance of both of these compo-

126 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

nents to the performance of EMAX algorithms, we conduct an ablation study
in two tasks: LBF 10x10-4p-3f-coop, and MPE spread. We compare the per-
formance of the full EMAX algorithm to two ablations which (1) substitute the
UCB exploration policy with an ϵ-greedy exploration policy, and (2) use target
networks to compute target values with each network in the ensemble having its
own target network. The results of this ablation study (Figure 6.12) demonstrate
the importance of both of these components, leading to notably better or similar
performance for all algorithms in both tasks. In particular the EMAX target
computation significantly improves performance across all algorithms and tasks.
The UCB exploration policy leads to significant improvements in LBF, but only
marginal gains in MPE. We hypothesise that agents need to explore less in the
MPE spread task due to the dense rewards, and that there are only few states in
which agents have to apply a particular action to coordinate.

6.5 Related Work

Uncertainty for exploration in RL Using uncertainty to guide exploration is a
well-established idea in RL . One family of algorithms that leverages this idea are
randomised value functions (Osband et al., 2019) that build on the idea of Thomp-
son sampling (Thompson, 1933) from the multi-armed bandits literature (Scott,
2010; Chapelle and Li, 2011). Posterior sampling RL extends Thompson sam-
pling by maintaining a distribution of plausible tasks, computes optimal policies
for sampled tasks, and continually updates its distribution of tasks from the
collected experience (Osband et al., 2013). This approach has extensive theoret-
ical guarantees (Osband and van Roy, 2017) but is difficult to apply to complex
tasks (Osband et al., 2016b). This limitation has been addressed in subsequent
works (Osband et al., 2016b,a; Janz et al., 2019), most notably in bootstrapped
DQN (Osband et al., 2016a) which approximates randomised value functions by
training an ensemble of value functions and explores by randomly sampling a value
function to greedily follow at the beginning of each episode. SUNRISE (Lee et al.,
2021) and MeanQ (Liang et al., 2022) also train an ensemble of value functions
but instead of sampling value functions to explore, they follow a UCB policy
using the average and standard deviation of value estimates across the ensem-
ble to explore. Moreover, SUNRISE computes a weighting of values loss terms
based on the variance of target values, and MeanQ stabilises the optimisation by

6.5. Related Work 127

computing lower variance target values as the average value estimate across the
ensemble (Anschel et al., 2017). Separately, Fu et al. (2022a) extend posterior
sampling to model-based RL by learning a probabilistic model of the environ-
ment, and Dearden et al. (1998) applied these ideas to tabular Q-learning to
learn distributions over Q-values and approximate the value of information of
actions. Related to all these ideas, optimistic value estimates in the face of uncer-
tainty can be used to promote exploration for actor-critic (Ciosek et al., 2019) and
model-based RL (Sessa et al., 2022). All these approaches leverage uncertainty
to guide their exploration, similar to EMAX. However, in contrast to discussed
approaches, EMAX focuses on exploration of cooperation in environments with
multiple concurrently learning agents.

Multi-agent exploration For the multi-agent setting, Wang et al. (2020b) incen-
tivise agents to interact with each other by intrinsically rewarding them for mu-
tually influencing their transition dynamics or value estimates. Similar intrinsic
rewards can be assigned for reaching goal states to train separate exploration poli-
cies (Liu et al., 2021b). However, intrinsic rewards for exploration have to be care-
fully balanced for each task due to the modified optimisation objective (Schäfer
et al., 2022; Chen et al., 2022). To address this challenge, LIGS (Mguni et al.,
2022) formulate the assignment of intrinsic rewards as a MARL problem and train
an agent to determine when and which intrinsic reward should be given to each
agents. Experience and parameter sharing have been leveraged to greatly improve
sample efficiency for MARL by synchronising agents’ learning and make use of
more data (Christianos et al., 2020, 2021). REMAX (Ryu et al., 2022) identifies
valuable initial states for episodes to guide exploration based on a latent represen-
tation of states learned using the interactions of agents in the environment. How-
ever, there is little research using distributional and ensemble-based techniques
for MARL exploration. Zhou et al. (2020) extend posterior sampling (Osband
et al., 2013) for MARL, but are limited to two-player zero-sum extensive games.
We aim to close this gap by proposing EMAX, an ensemble-based technique for
efficient exploration in cooperative MARL. We further highlight that EMAX is a
plug-and-play algorithm that can enhance any value-based MARL algorithm, in-
cluding most existing MARL exploration techniques described in this paragraph.

128 Chapter 6. Ensemble Value Functions for Multi-Agent Exploration

6.6 Conclusion

In this chapter, we proposed EMAX, a general framework to extend any value-
based MARL algorithms using ensembles of value functions. EMAX leverages
the disagreement of value estimates across the ensemble with a UCB policy to
guide exploration towards parts of the environment which might require coor-
dination between multiple agents. Additionally, gradients during training are
stabilised by computing target values as the average value estimate across the
ensemble. Empirical results in 11 mixed-objective and 21 common-reward tasks
across four environments demonstrated that EMAX significantly improves sample
efficiency, final performance, and training stability as an extension of IDQN and
value decomposition algorithms VDN and QMIX. We provided extensive analysis
to establish the effects of the EMAX exploration policy and target computation,
provided ablations for all components of EMAX, and discussed the computa-
tional cost introduced by EMAX with experiments indicating that comparably
small ensemble models are sufficient to achieve the demonstrated improvements
and that baselines even with comparable network sizes do not achieve the same
benefits. We believe that EMAX is a promising approach to improve exploration
in cooperative MARL due to its plug-and-play nature and demonstrated efficacy
in complex cooperative tasks.

Chapter 7

Warehouse Logistics: A Case Study
for Scalable Multi-Agent
Reinforcement Learning

Publication
This chapter is based on and adapted from the following publication:

Aleksandar Krnjaic, Raul D. Steleac, Jonathan D. Thomas, Georgios Pa-
poudakis, Lukas Schäfer, Andrew Wing Keung To, Kuan-Ho Lao, Murat
Cubuktepe, Matthew Haley, Peter Börsting, Stefano V. Albrecht “Scalable
multi-agent reinforcement learning for warehouse logistics with robotic and
human co-workers.” In Proceedings of the 2024 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 2024.

So far in this thesis, we have discussed the challenges of exploration and
sample efficiency in single-agent and multi-agent reinforcement learning settings.
We have seen that, in particular in the multi-agent setting, reinforcement learning
can be quite sample inefficient due to the challenges that arise from the concurrent
learning of multiple agents and need for cooperation across agents in many tasks.
However, we proposed novel approaches that improve the sample efficiency by
sharing experiences with each other (Chapter 5) and focusing exploration on
states where interactions between agents matter (Chapter 6). In this chapter, we
will look at the setting of warehouse logistics automation as a case study for the
complexity of MARL and the considerations required to effectively apply MARL

129

130 Chapter 7. Warehouse Logistics with Multi-Agent Reinforcement Learning

solutions to real-world problems.1

More concretely, in this chapter we will take a look at the problem of order-
picking within warehouse logistics. Order-picking refers to the process of re-
trieving items in the warehouse and delivering them to a target location in the
warehouse for further handling (Petersen and Schmenner, 1999). An order re-
ceived by a commercial warehouse operator may comprise of several order-lines
that represent specifications of a required item and its required quantity as part
of an order. The goal of many order-picking problems can be formulated as the
maximisation of the pick rate, i.e. the rate at which required items are retrieved
in a warehouse to complete orders. Below, we describe two different order-picking
paradigms which we will consider in this chapter person-to-goods and goods-to-
person. In both paradigms, for a given set of orders, the objective is to minimise
the time for order completion, which is equivalent to maximising the pick rate.

In the person-to-goods (PTG) paradigm, human workers will receive orders
and travel around the warehouse with a push cart and pick required items man-
ually. We consider the augmentation of this process with robotic vehicles which
we will refer to as automated guided vehicles (AGVs). The general idea of AGV-
assisted order-picking has begun to receive attention in the academic literature
(Löffler et al., 2022; Žulj et al., 2022; Azadeh et al., 2023). Typically, this involves
decoupling a traditional picker’s role into order transportation and item picking,
where transportation is handled by the AGVs and picking is handled by human
or robotic pickers. Augmentation of this paradigm with AGVs requires minimal
modification to existing infrastructure and allows for scaling with variation in
demand by changing AGV and picker numbers (Azadeh et al., 2023).

In the alternative goods-to-person (GTP) paradigm, large-scale autonomous
systems comprised of conveyors, picking robots and transport robots move storage
mediums (such as totes, cartons or shelves) containing items to stationary human
pickers, who pick and consolidate items out of the storage medium. Automation
efforts have generally focused on this GTP paradigm, with numerous examples
including the Dematic Multishuttle (Dematic, 2024), Autostore (Dematic, 2024),
Quicktron QuickBin (Quicktron, 2024) and Amazon KIVA (Wurman et al., 2008).
In comparison to PTG systems, GTP systems have higher throughputs, but re-
quire significant capital investment and can be costlier to adjust to varying ware-

1The presented research is the result of an industry collaboration and internship at Dematic
GmbH, a global company focused on warehouse automation and robotics.

131

house capacity and consumer demand. For these reasons, adoption is generally
limited to larger operations.

Established industry methods for order-picking using heuristic approaches re-
quire significant engineering efforts to optimise for innately variable warehouse
configurations (Azadeh et al., 2023). Ideally, the derivation of optimal methods
for worker control should be an automatic process. Due to the focus on learning
decision making and notable prior successes for a number of complex real-world
control problems (Bellemare et al., 2020; Li et al., 2021c; Song et al., 2023; Aza-
girre et al., 2024), RL is a natural choice to automate this process. Since order-
picking naturally is a multi-agent problem requiring cooperation between multiple
AGVs, robots, and human pickers, we leverage MARL to model the learning of all
decision-making entities in the warehouse. Existing heuristic approaches require
significant engineering effort and tuning to fit different specifications depending
to varying factors such as demand, supply, labour conditions and order profiles.
In contrast, MARL is flexible to operate with diverse warehouse and worker spec-
ifications such that the same learning process can be applied to learn optimised
solutions for varying settings without the need for manual intervention.

In this chapter, we develop a general-purpose and scalable MARL solution for
the order-picking problem in warehouses with heterogeneous agents, i.e. robotic
and human co-workers. Our approach constructs a multi-layer hierarchy in which
a manager agent assigns goals to worker agents (pickers, AGVs), where each goal
represents a section of the warehouse (e.g., aisle) in which the worker needs to
choose an item to pick. The policies of the manager and worker agents are jointly
trained via MARL to maximise a global objective given by the pick rate as defined
in Section 7.1. The hierarchical approach effectively reduces the action space of
the workers by several magnitudes and facilitates better cooperation through the
centrally trained manager agent.

We apply the hierarchical architecture on top of existing MARL algorithms,
including independent actor-critic (Mnih et al., 2016; Papoudakis et al., 2021),
shared network actor-critic (Gupta et al., 2017; Christianos et al., 2021), and
shared experience actor-critic (Christianos et al., 2020), and demonstrate that
it significantly improves the sample efficiency and overall pick rate of these al-
gorithms in a diverse set of warehouse configurations. For our experiments, we
implement the high-performance Dematic PTG simulator which is capable of rep-
resenting real-world warehouse operations. Additionally, we introduce an open-

132 Chapter 7. Warehouse Logistics with Multi-Agent Reinforcement Learning

Delivery
locations

Item locations

AGV agent

Picker agent

AGV agent (carrying storage medium)

Pick requested
Delivery
location

AGV
agent

Picker
agent

Item
locations

Figure 7.1: Left: Dematic PTG simulator with human pickers and AGVs. Right: TA-
RWARE GTP simulator with picking bots (diamond) and AGVs (hexagon).

source adaptation of the RWARE environment (Papoudakis et al., 2021) to rep-
resent a GTP warehouse based on the Quicktron QuickBin systems (Quicktron,
2024), named task assignment multi-robot warehouse (TA-RWARE).2 These two
simulation environments are displayed in Figure 7.1. We introduce competitive
human-engineered heuristic methods for both picking paradigms as baselines, and
show that agents trained via our MARL algorithms achieve superior overall pick
rates in both picking paradigms.

7.1 Problem Setting

First, we define and formulate the order-picking problem in the context of ware-
house logistics. In the following, we will denote a warehouse as W = {L,Z,W}
which is composed of three components:

• L refers to the set of locations within the warehouse, showed in Figure 7.1,
and can be further broken down into L = Litem ∪ Ldelivery ∪ Lother, where
Litem refers to the set of locations with items stored inside storage mediums,
Ldelivery refers to locations where completed orders or storage mediums are
delivered, and Lother refers to other locations (e.g. idle or charging loca-
tions).

• Z defines the order distribution, which is dependent on the warehouse’s
supplier and customer behaviour and is assumed to be known. An order
z = {(u0, q0), . . . , (un, qn)} is sampled from Z. Each pair (uk, qk) represents

2The TA-RWARE environment is available open-source at https://github.com/
uoe-agents/task-assignment-robotic-warehouse.

https://github.com/uoe-agents/task-assignment-robotic-warehouse
https://github.com/uoe-agents/task-assignment-robotic-warehouse

7.1. Problem Setting 133

an order-line, where u represents the item and q the required quantity.
Items u are stored inside a storage medium at an item location l ∈ Litem.

• W = V ∪P represents the set of workers, where V and P are homogeneous
sets of AGVs and pickers, respectively. AGVs v ∈ V can visit locations
l ∈ L, and pickers p ∈ P can visit locations l ∈ Litem.

The order-picking paradigms PTG and GTP differ in the way items are re-
trieved and delivered:

• In PTG picking, |Ldelivery| = 1. In this paradigm, AGVs are assigned orders
sampled from Z with zv denoting the current order of AGV v ∈ V . A human
picker p ∈ P will pick an order-line (u, q) out of a storage medium at an
item location l ∈ Litem and place it into an AGV v. Once the AGV has
received all order-lines, the order zv is completed and the AGV will deliver
it to a delivery station l ∈ Ldelivery.

• In GTP picking, multiple AGVs v ∈ V will carry separate storage mediums
containing items {u0, ..., un} which are required in an order z. A picker
robot p ∈ P will move a storage medium from an item location Litem

containing item u onto an AGV v, and the AGV will take the storage
medium to a picking station l ∈ Ldelivery, where an operator will pick an
order-line (u, q) from the AGV. Once all order-lines for order z are picked,
the order is completed.

As the evaluation objective, we seek to derive a joint policy π that maximises
the average pick rate K in a given warehouse, formally denoted with:

π ∈ arg max
π

K(W , π) (7.1)

The pick rate is measured in completed order-lines per hour. A key desideratum
of our solution is to automatically learn optimal policies for any given warehouse
configuration and order profile. Specifically, we desire a general-purpose algo-
rithm that can learn to handle variations in multiple dimensions, including the
number of total item locations |L|, the order distribution Z, and the number of
workers |V | + |P |. Controlling all workers with a single decision-making entity
becomes infeasible due to the joint action space growing exponentially with the
number of workers. Hence, we consider MARL approaches in which pickers and
AGVs are modeled as individual agents. This multi-agent problem given by a
warehouse can be modelled as a POSG with N agents (Section 2.4).

134 Chapter 7. Warehouse Logistics with Multi-Agent Reinforcement Learning

7.2 Warehouse Simulators

We implement two simulators that model the previously described warehouse
problems, one for each picking paradigm.

For the action space of agents, we need to consider the tasks of both types of
agents. Picker agents need to be able to visit all item locations l ∈ Litem to assist
in picking of good. Similarly, AGV agents need to be able to visit all locations
l ∈ L which include all item locations as well as additional locations such as
delivery and charging stations. We enable this by defining the action space of
pickers and AGVs as Ap = Litem and Av = L, respectively. Agents are considered
busy until they transit to their selected action location. This proposed action
space simplifies AGV and picker collaboration by allowing policies to focus on
coordinating item location selection between agents while leaving the low-level
navigation task to a pre-defined controller. Such a high-level action space has the
additional benefit of simplifying the future challenge of sim-to-real for real-world
application. However, this modelling decision also results in a large action space
that scales with the number of item locations within the warehouse which makes
learning in larger warehouses challenging.

7.2.1 Dematic Person-to-Goods Simulator

Our first environment is Dematic’s high-performance PTG warehouse simulator
that is capable of representing real-world PTG warehouse operations. An example
snapshot of a simulated warehouse in our experiments is shown in Figure 7.1
(left). Pickers in this simulator are human workers, and cooperate with AGVs
that transport picked items. AGVs travel to multiple storage locations to receive
items successively, picked by human pickers. Once all items within an order are
collected, the AGV delivers the order to a single delivery location.

The agents are presented with an episodic task consisting of N orders that
are randomly distributed within locations Litem, terminating when all orders are
completed. The observations of agents in the PTG simulator are defined as follows
with ⊕ denoting the concatenation operator:

Op = {(lci , lti) | i ∈ I} ⊕ {zv | v ∈ V } (7.2)

Ov = {(lci , lti) | i ∈ I} ⊕ zv (7.3)

with Op and Ov denoting the observation spaces of picker and AGV agents, re-

7.2. Warehouse Simulators 135

spectively. In short, pickers and AGVs observe the current and target locations
of all agents, denoted lci ∈ L and lti ∈ L for agent i. Additionally, pickers observe
all orders zv of AGVs v ∈ V while AGVs only observe their own order.

Pickers are rewarded +0.1 for picking an item onto an AGV. Similarly, AGVs
are rewarded +0.1 for receiving a picked item with an additional reward of +0.1
for delivering the order. To incentivise efficient and fast deliveries, all agents
receive a small negative reward of -0.01 per time step.

7.2.2 TA-RWARE Goods-to-Person Simulator

Our second environment is an open-source simulator named TA-RWARE visu-
alised in Figure 7.1 (right). TA-RWARE models the GTP paradigm and extends
the previously introduced multi-robot warehouse (RWARE) environment (Sec-
tion 4.1.5) with heterogeneous agents (AGVs and picker robots) and a high-level
action space where agents select target locations as actions. The execution of
agents moving towards their desired location is achieved using a fixed path plan-
ning algorithm. In this environment, AGVs travel to a single warehouse location
to retrieve a storage medium containing items, transferred to the AGV by a pick-
ing robot. The storage mediums are then delivered to one of multiple delivery
locations which represents a human picking station. Human pickers are not mod-
elled in our simulator since they would be placed outside of the bounds of the
system at the delivery locations. As such, when we refer to a picker in the context
of this simulator, we are referring to a picking robot that lifts storage mediums
(such as totes or boxes) onto the AGV.

Given the shared order profile, all agents observe the current and target lo-
cations of every agent, the carrying and loading states of all AGVs, as well as
whether carried items are currently requested, and a map indicating which storage
locations are empty, contain unrequested and requested shelves:

O = Op = Ov = {(lci , lti) | i ∈ I}

⊕ {(carryingv, requestedv, loadingv) | v ∈ V }

⊕ {occupiedl, requestedl} | l ∈ Litem}

(7.4)

Pickers are rewarded +0.1 for loading or unloading a storage medium onto
an AGV. AGVs are rewarded +1 for delivering storage mediums, and all agents
receive a negative reward of -0.01 per time step.

136 Chapter 7. Warehouse Logistics with Multi-Agent Reinforcement Learning

7.3 Methodology

In this section, we will outline two techniques to address the scalability and
exploration challenges that arise due to the large action space in our warehouse
simulators: (1) action masking and (2) a hierarchical policy structure for MARL.

7.3.1 Action masking

To reduce the effective action space of each agent and, thus, simplify learning,
we mask out actions that are considered sub-optimal by adjusting logits (Huang
and Ontañón, 2022). For instance, in PTG, one immediate observation is that
whilst fulfilling an order z, AGVs should only move to locations l ∈ Litem within
the warehouse that contain requested items in z. Typically, this number is sig-
nificantly smaller than the total number of item locations, i.e. |Av| ≤ |z| � |L|.
Below, we detail action masking approaches for both studied settings and cor-
responding simulators that are then applied to varying warehouses within these
settings.

For the Dematic PTG simulator (Section 7.2.1), we define order-specific action
masks for AGVs that remove item locations that are not part of the current order
of a particular AGV from the action space. Pickers have a shared action mask,
that enables them to choose the target item location of any AGV to enable them
to coordinate with AGVs. Lastly, pickers cannot take actions to choose locations
that other pickers have chosen and are in transit to.

For the TA-RWARE GTP simulator (Section 7.2.2), we define a similar action
mask for AGVs, where they can only choose locations that are requested storage
medium locations or delivery locations. For pickers, we follow the same masking
scheme as in the PTG paradigm, where pickers can travel to load and unload
from current AGV target locations that are not already serviced by other pickers.

We note that action masking simplifies the decision-making problem by limit-
ing the pool of available actions, but also introduces bias in the generated policies
by limiting their expressiveness. For example, under our proposed action mask-
ing, picker agents are unable to pre-emptively move to locations to wait for AGVs
that might move there in the future. Instead, they have to wait for a AGV to
start moving to a location before they are able to choose it as a target. While the
proposed action masking aims to minimise bias, we leave their complete exception
from our large action space training regime to future work.

7.3. Methodology 137

Manager
action

Worker
observation 𝑜!

𝑎! Path

𝑎"

𝑦!

𝑦"

Worker
action

Manager
observation

Low-Level N

Low-Level 1

Worker N

Worker 1

Manager

𝑜"

Path

𝑜#

Figure 7.2: 3-layer manager and worker agent hierarchy. A manager agent observes
global information about the warehouse state om, and assigns a target zone in the
warehouse to each worker agent. Worker agents receive local observations oi and
the assigned target zone from the manager yi, and select an item location from the
assigned target zone given by ai. A low-level controller then navigates the worker to
the selected item location.

7.3.2 Hierarchical MARL for Order-Picking

By employing a hierarchical model, we further reduce the complexity of the action
space and improve the handling of the differing termination durations for actions.
We introduce a 3-layer adaptation of feudal multi-agent hierarchies (FMH) (Ahi-
lan and Dayan, 2019), shown in Figure 7.2, that involves the introduction of a
manager agent that produces goals for worker agents to satisfy. In contrast to
FMH, manager goals do not affect worker reward functions, but instead the goals
partition the worker action spaces, and worker agents do not execute primitive
actions in the environment, instead delegating their decisions to lower-level con-
trollers. The manager goals divide the locations within the warehouse into a set
of disjoint zones Y , formally L = ⋃

y∈Y y. The manager’s action space consists of
a choice from the set of zones Y for each agent i ∈ I, given by Am = Y|I|. Given
assigned zone yi to worker agent i, its policy πi selects a new target location lti ∈ yi

within the assigned zone. This decomposition greatly reduces the effective action
space of each agent’s policy that is now bounded by maxy∈Y |y| � |L|. Once
the target location of each worker agent is determined, a lower-level controller
calculates the shortest path from its current location and execute the necessary

138 Chapter 7. Warehouse Logistics with Multi-Agent Reinforcement Learning

sequence of primitive actions (we use the A* algorithm (Hart et al., 1968) in our
experiments).

To be able to decide on effective assignment of worker agents to zones, the
manager receives global information about the state of the warehouse. Within the
Dematic PTG simulator, the manager, observes the current and target locations
of all worker agents as well as the orders of all AGVs:

Om = {(lci , lti) | i ∈ I} ⊕ {zv | v ∈ V } (7.5)

Within the TA-RWARE GTP simulator, the manager observation space is identi-
cal to the observation space of worker agents (Om = O) as defined in Equation 7.4.

All worker agents and the manager are jointly trained with MARL. At every
time step, the manager receives a reward rt

m equivalent the sum of rewards re-
ceived by non-busy workers after each intermediate step τ ∈ [t, t + ki], where ki

represents the number of steps taken by worker i before reaching the goal:

rt
m =

∑
i∈I

rt:t+ki
i , with (7.6)

rt:t+ki
i =

∑t+ki

τ=t r
τ
i , if i received a goal at t

0, otherwise
(7.7)

7.4 Empirical Evaluation

7.4.1 Algorithms

We compare several MARL baselines, with and without our hierarchical manager
agent, with established heuristics commonly used in warehouse logistics solutions.
We outline details about all evaluated algorithms below.

Heuristic Solutions Two established industry heuristics used by Dematic for
order-picking under the PTG paradigm are follow me (FM) and pick, don’t move
(PDM). These heuristics are similar to the strategies described by Azadeh et al.
(2023) as No Zoning and Progressive Zoning. For the GTP paradigm, we define
a third heuristic which we call closest task assignment (CTA).

Follow me (FM): Multiple AGVs are assigned to each picker to form a group
and will follow them through the warehouse. Each AGV’s order is concatenated
and the travelling salesman problem (TSP) solution is generated to determine the

7.4. Empirical Evaluation 139

order in which the items will be picked. The TSP path minimises the distance
of each group of workers with the constraint that they stay together while orders
are not yet completed. FM minimises idle time for pickers, as it ensures that they
are always travelling or picking, but can also lead to more travelling of pickers
than needed.

Pick, don’t move (PDM): Pickers are allocated to zones, for example with
each picker being assigned a particular aisle within the warehouse, and meet
AGVs that travel into their designated zone to pick items for them. The AGVs
travel to all item locations in their current order using a TSP solution. Pickers
prioritise service of AGVs by the relative proximity of the AGV and picker to the
target locations. PDM minimises travel distance for pickers but can also result
in under-utilisation of pickers in case there are few items within current orders in
their operating zones.

Closest task assignment (CTA): AGVs travel to single storage locations
and deliver storage mediums from those storage locations to a plurality of delivery
locations. Storage mediums that need to be picked are assigned to the closest
AGV which takes the storage medium to the closest delivery location. Once
delivered, the AGV then returns the storage medium to the closest empty shelf
location. Closest in this context refers to the minimum distance path found by
the A* algorithm (Hart et al., 1968). Pickers stick to allocated zones (similar to
PDM), but prioritise AGVs in a first-in-first-out (FIFO) queue according to the
order in which AGVs were assigned to pick or drop an item within their zone.
Similarly to PDM, CTA minimises travel distance for pickers but may also result
in picker under-utilisation.

MARL Solutions Motivated by the performance of MARL algorithms in the
RWARE environment (Chapter 4), we focus our evaluation on on-policy actor-
critic methods and do not evaluate off-policy value-based methods. We evaluate
several MARL algorithms based on independent advantage actor-critic (IA2C) (Mnih
et al., 2016; Christianos et al., 2020; Papoudakis et al., 2021) that differ in their
network- and data-sharing mechanisms. More specifically, we consider IA2C with-
out parameter sharing, SNAC, and SEAC, as introduced in Chapter 5, as well as
their hierarchical counterparts HIA2C, HSNAC, and HSEAC with the manager
agent as outlined in Section 7.3.2.

The policy and value network of the manager are given by a multi-headed neu-

140 Chapter 7. Warehouse Logistics with Multi-Agent Reinforcement Learning

Table 7.1: Warehouse configurations for the Dematic PTG simulator (top) and the
TA-RWARE GTP simulator (bottom) considered in the evaluation.

Small Medium Large Disjoint

D
em

at
ic

PT
G

Aisles 2 10 22 12 + 12
Item Locations |Litem| 200 400 1276 1392
Partitions |Y | 4 10 22 24
Pickers |P | 4 6 8 4
AGVs |V | 8 12 16 16
Avg. order-lines per order E(|zv|) 5 5 5 2
Orders |Z| 80 80 80 80

TA
-R

W
A

R
E

G
T

P

Rack Rows 2 4
Rack Columns 5 7
Column Length 8 8
Column Width 2 2
Item Locations |Litem| 160 448
Partitions |Y | 10 28
Delivery Locations |Ldelivery| 10 14
Pickers |P | 4 7
AGVs |V | 8 14

ral network comprising of three fully-connected layers consisting of 128 neurons
each with ReLU activations, and a policy and value head for each worker agent.
Each worker agent is parameterised by a policy and critic network represented by
two fully connected layers of 64 neurons with ReLU activations. We use the same
algorithm hyperparameter values in all MARL algorithms and experiments. The
Adam optimiser (Kingma and Ba, 2015) is used with a learning rate of 0.0003
and epsilon of 0.001, target networks are updated every 100 steps, and generalised
advantage estimation (GAE) (Schulman et al., 2016) is used to compute return
estimates with λ = 0.96. The discount factor is set to 0.99 for all agents. In all
our experiments, we train agents for 10,000 episodes.

7.4. Empirical Evaluation 141

Table 7.2: Performance comparisons between heuristics and MARL algorithms, show-
ing mean ± 95% confidence intervals of pick rate in order-lines per hour.

Dematic Simulator (PTG) TA-RWARE (GTP)
Small Medium Large Disjoint Small Large

FM 901.3± 1.9 1,098.1± 3.8 1,230.2± 5.1 568.4± 1.7 – –
PDM 783.6± 2.8 982.2± 4.0 1,123.9± 4.9 677.4± 2.1 – –
CTA – – – – 52.7± 0.9 67.1± 0.8
IA2C 1,053.0 ± 2.8 1,206.4± 4.2 1,263.9± 5.8 733.2± 2.7 65.2± 0.5 80.4± 0.6
SNAC 990.9± 2.8 1,142.7± 4.3 1,235.0± 5.7 688.7± 2.7 60.8± 0.7 72.1± 0.9
SEAC 1,019.7± 2.9 1,185.1± 5.1 1,262.9± 5.7 739.8± 2.4 64.8± 0.4 82.2± 0.5
HIA2C (ours) 1,025.9± 4.3 1,232.1± 4.8 1,354.2± 5.9 794.1± 2.7 66.7 ± 0.3 86.0 ± 0.5
HSNAC (ours) 1,030.8± 3.8 1,232.8± 5.1 1,363.8± 6.0 796.9± 2.4 66.0± 0.7 85.0± 0.5
HSEAC (ours) 1,028.2± 3.9 1,242.1 ± 5.0 1,370.9 ± 5.7 803.5 ± 2.6 64.6± 0.4 84.8± 0.6

7.4.2 Environment Details

We evaluate the algorithms in four different PTG environment configurations and
two different GTP environment configurations based on Dematic customer ware-
house profiles. For the PTG warehouse configurations, the Large configuration is
shown in Figure 7.1 (Left), with Small and Medium being smaller versions. Dis-
joint is a warehouse separated into two sub-warehouses joined by a passage. Such
warehouse configurations might occur in practice when storing different types of
goods with varying storage criteria, such as regular and frozen goods. All details
about the configurations of both simulators are detailed in Table 7.1. We use
pick rate measured in order-lines per hour as our primary performance measure,
indicating the average frequency of picks in each episode.

7.4.3 Results

Figure 7.3a shows the pick rate for HIA2C, HSNAC, HSEAC and all baselines
across training in PTG. While different warehouse configurations can favour one
heuristic or the other (e.g. FM in Large, PDM in Disjoint), we observe that
the hierarchical algorithms achieve significantly higher pick rates than these two
heuristics independent of the warehouse setting. Comparing the hierarchical ver-
sions against the original algorithms (i.e. HIA2C to IA2C, HSNAC to SNAC,
HSEAC to SEAC) demonstrates the advantage of the hierarchical architecture,
with all hierarchical versions converging significantly faster, especially as the com-
plexity of the warehouse increases.

We perform a similar analysis for the GTP paradigm, shown in Figure 7.3b,

142 Chapter 7. Warehouse Logistics with Multi-Agent Reinforcement Learning

0 2000 4000 6000 8000 10000
Episodes

700
750
800
850
900
950

1000
1050
1100

Or
de

rli
ne

s /
 h

ou
r

Small

0 2000 4000 6000 8000 10000
Episodes

900
950

1000
1050
1100
1150
1200
1250
1300

Or
de

rli
ne

s /
 h

ou
r

Medium

0 2000 4000 6000 8000 10000
Episodes

1000

1100

1200

1300

1400

Or
de

rli
ne

s /
 h

ou
r

Large

0 2000 4000 6000 8000 10000
Episodes

450
500
550
600
650
700
750
800
850

Or
de

rli
ne

s /
 h

ou
r

Disjoint

FM PDM IA2C SNAC SEAC HIA2C HSNAC HSEAC

(a) Dematic PTG simulator

0 2000 4000 6000 8000 10000
Episodes

30

40

50

60

Or
de

rli
ne

s /
 h

ou
r

Small

0 2000 4000 6000 8000 10000
Episodes

20

30

40

50

60

70

80

90

Or
de

rli
ne

s /
 h

ou
r

Large

CTA IA2C SNAC SEAC HIA2C HSNAC HSEAC

(b) TA-RWARE GTP simulator

Figure 7.3: Average pick rate (order-lines per hour) in (a) Dematic PTG simulator
and (b) TA-RWARE GTP simulator tasks with heuristics FM/ PDM/ CTA and MARL
algorithms IA2C, SNAC, SEAC, HIA2C (ours), HSNAC (ours), HSEAC (ours). Shad-
ing indicates the 95% stratified bootstrap confidence intervals (Agarwal et al., 2021)
across five seeds. Average window smoothed over 300 episodes.

7.4. Empirical Evaluation 143

contrasting the pick rates achieved by the proposed methods against the CTA
heuristic and the same list of MARL baselines. All MARL algorithms except
SNAC surpass the heuristic by the end of training in the Small GTP warehouse,
while this remains true only for the hierarchical methods in the Large GTP ware-
house. Similar to our results in Chapter 5, the comparably poor performance of
SNAC can be explained with all worker agents sharing identical policies, which
can lead to frequent delays due to agent collisions or deadlock situations. In
contrast, HSNAC avoids such conflicts with the hierarchical manager effectively
coordinating workers by conditioning their policies on assigned target goals to
distribute workers across the warehouse, further highlighting the effectiveness of
such a hierarchical policy decomposition (see Figure 7.3b, left). We omit the train-
ing curve for SNAC in the plot for the Large configuration as it achieves similar
low performance as in Small. Finally, analogous to the PTG environment, MARL
algorithms with hierarchical models outperform the non-hierarchical baselines in
final performance and rate of convergence.

We perform a similar analysis for GTP, shown in Figure 7.3b, contrasting the
pick rates achieved by the proposed methods against the CTA heuristic and the
same MARL algorithms. All MARL methods surpass the heuristic for both sizes
of the warehouse, with SNAC achieving the lowest pick rates by the end of train-
ing. The sub-par performance of SNAC can be explained with all worker agents
sharing identical policies, which can lead to frequent delays due to agent collisions
or deadlock situations among workers, similar to the downsides of parameter shar-
ing discussed in Chapter 5. The advantage of the hierarchical architecture can be
observed when comparing HSNAC to SNAC. HSNAC avoids deadlocks through
the manager, by conditioning the worker policies on assigned target goals to dis-
tribute them across the warehouse. Finally, analogous to the PTG environment,
all MARL algorithms with hierarchical models outperform the non-hierarchical
counterparts in sample efficiency. This is especially noticeable in the Large con-
figuration, highlighting again the scaling benefits of the hierarchical models.

In Table 7.2, we compare the average pick rates achieved by the algorithms
during the final 50 training episodes. In the Small PTG configuration, IA2C
achieves on-par pick rates with the hierarchical algorithms, a difference of only
2.2%, while surpassing FM and PDM by 16.8% and 34.4%, respectively. We
attribute these results to the relatively low difficulty of the task where the hier-
archical approach does not offer substantial benefits. As we scale up warehouse

144 Chapter 7. Warehouse Logistics with Multi-Agent Reinforcement Learning

complexity, the hierarchical algorithms start reaching the highest overall pick
rates. In Medium, HSEAC exceeds FM and PDM by 13.1% and 26.5%. In Large,
HSEAC exceeds FM and PDM by 11.4% and 22.0%. In Disjoint, HSEAC exceeds
FM and PDM by 41.3% and 18.6%. In GTP, the hierarchical models achieve the
highest pick rates, HIA2C surpassing the CTA heuristic by 26.6% in the Small
configuration and by 28.2% in the Large configuration.

7.5 Related Work

Below we discuss related work that tackles similar order-picking problems and
warehouses, or employs similar MARL techniques.

AGV-Assisted Order-Picking Azadeh et al. (2023) model the order-picking
problem as a queuing network and explore the impact of different zoning strategies
(no zoning and progressive zoning). They then further extend their method by rep-
resenting it as a MDP and consider dynamic switching based on the order-profile
using dynamic programming. Löffler et al. (2022) consider an AGV-assisted picker
and provide an exact polynomial time routing algorithm for single-block parallel-
aisle warehouses. Žulj et al. (2022) consider a warehouse partitioned into disjoint
picking zones, where AGVs meet pickers at handover zones to transport the or-
ders back to the depot. They propose a heuristic for effective order-batching to
reduce tardiness. Our work differs from these works as it does not place any
restrictions on how workers may cooperate and, to the best of our knowledge, is
the first application of MARL to AGV-assisted order-picking.

Multi-Agent Path Finding Reciprocal n-body collision avoidance (van den
Berg et al., 2011), or multi-agent path finding (MAPF), aims to build systems
where teams of agents can traverse the environment to reach individually allo-
cated targets while following optimal trajectories and avoiding collisions. MARL
quickly became a promising tool for solving path-finding coordination problems,
being adopted to boost scalability (PRIMAL (Sartoretti et al., 2018) and PRI-
MAL2 (Damani et al., 2020)), enable communication (Li et al., 2020) or facili-
tate implicit priority learning (Li et al., 2022). Lifelong-MAPF (Li et al., 2021b)
(LMAPF) extends MAPF, as new target locations are automatically assigned to
the agents upon reaching their previous goal location. Li et al. (2021b) utilise

7.5. Related Work 145

a centralised but bounded planner that minimises re-planning costs accumulated
when receiving new targets while also showing an increase in responsiveness and
adaptability of the proposed solution. Greshler et al. (2021) introduce coopera-
tive multi-agent path finding, which is applicable within our domain but requires
explicit specification of the workers that are required to cooperate and does not
allow for optimisation over extended periods of time. While we note the relevance
of MAPF and especially LMAPF algorithms for the complete warehouse optimi-
sation problem, we draw a distinction between the path-finding and order-picking
settings and highlight their complementary nature. In MAPF, task assignment
processes are assumed to be external to the path planning method, in contrast
to our setting where task assignment represents the main focus and path-finding
is achieved through robust planning methods.

Multi-Agent Pick-up and Delivery Problem Multi-agent pick-up and delivery
(MAPD) problems (Ma et al., 2017) consider a set of agents that are sequentially
assigned tasks in the form of target pick-up and delivery locations, and then travel
to their allocated locations while avoiding collisions with others. The objective is
to minimise the time duration required for task completion, which may be further
broken down into two sub-problems: multi-agent task assignment (TA) and multi-
agent path-finding (MAPF) (Ma et al., 2017; Xu et al., 2022). However, MAPD
approaches typically rely on hand-engineered heuristics that assume homogeneity
among the agent architectures (Ma et al., 2017), with variance in agent velocities
being the general extent for agent diversity (van den Berg et al., 2011). This
assumption is a drastic simplification of the complex coordination problem of
order-picking systems and reduces the cooperation among the agents to collision
avoidance, which is solely tackled through the MAPF module. The decoupling of
workers within our approach introduces complex interdependencies between the
paths of different worker types that significantly complicates the problem. In our
setting, pickers and AGVs need to synchronise and coordinate to meet at certain
item locations at matching times in order to complete pick-ups. Furthermore,
coordination among agents of the same type is required to minimise situations in
which multiple pickers move to the same item location which can cause significant
delays and conflicts. In contrast to these hand-crafted heuristic-based solutions,
Weyns et al. (2008) proposed an automated decision-making process that models
decentralised control for multi-robot warehouse coordination problems using free-

146 Chapter 7. Warehouse Logistics with Multi-Agent Reinforcement Learning

flow trees (Tyrrell, 1993). Alternatively, Claes et al. (2017) leverage distributed
planning based on Monte Carlo tree search in similar problems to derive scalable
decision-making policies. In contrast, our work leverages multi-agent reinforce-
ment learning to learn decision-making policies completely by trial-and-error in
a simulation environment.

Multi-Agent Reinforcement Learning MARL algorithms are designed to train
coordinated agent policies for multiple autonomous agents, and have received
much attention in recent years with the introduction of deep learning techniques
into MARL (Albrecht et al., 2024; Papoudakis et al., 2019). MARL has pre-
viously seen application to various warehousing problems, including SEAC to
homogeneous GTP systems (Chapter 5), and a deep Q-network variant for sorta-
tion control (Kim et al., 2020). For the specific complexities of the order-picking
problem, we consider methods at the intersection of MARL and hierarchical RL to
enable action space decomposition and temporal abstraction. This combination
has been studied by Xiao et al. (2020) who derive MARL algorithms for macro-
actions under partial observability, and Ahilan and Dayan (2019) who propose
feudal multi-agent hierarchies (FMH) that extends feudal RL (Dayan and Hinton,
1992) to the cooperative MARL domain. We introduce a 3-layer adaptation of
FMH and apply it to a partially observable stochastic game with individual agent
reward functions.

7.6 Conclusion

In this chapter, we considered the real-world problem of order-picking for automa-
tion in warehouses. We formalised two paradigms of the order-picking problem,
person-to-goods (PTG) and goods-to-person (GTP), and presented simulators
that model both of these paradigms, Dematic PTG and TA-RWARE GTP, the
latter of which is made available open-source. Motivated by the problem of large
action spaces in these problem settings, we proposed a twofold solution that
consists of a hierarchical MARL architecture with a manager agent that assigns
individual goals to worker agents inside the warehouse, and an action masking
process that filters out sub-optimal actions. The policies of the manager agent
and all worker agents are jointly trained using MARL. We integrated our ap-
proach into several commonly used actor-critic MARL algorithms that differ in

7.6. Conclusion 147

their mechanisms of sharing data and parameters. Our results indicate that the
hierarchical architecture is essential in achieving high performance in these set-
tings, in particular for large warehouses with many possible locations to move to.
Besides making learning more efficient and scalable, the hierarchical decomposi-
tion also provides a high-level central coordination mechanism, as goals for all
agents are selected by a single manager policy. Overall, our results showed that
MARL solutions can outperform human-engineered and well-established indus-
try heuristics as well as commonly used MARL baselines in various warehouse
configurations across both PTG and GTP paradigms. These results suggest that
MARL can derive effective solutions for the order-picking problem and indicate
the promise of MARL for warehouse logistics optimisation.

Chapter 8

Conclusion

In this thesis, we have explored the problem of exploration in single-agent and
multi-agent reinforcement learning and have proposed novel algorithms to address
important challenges in this area. Below, we re-iterate the research questions we
posed in Chapter 1 and summarise the contributions of this thesis in answering
these questions.

Chapter 3 focused on the setting of intrinsically motivated single-agent rein-
forcement learning for exploration. Within this setting, the balance of intrinsic
rewards for exploration and extrinsic rewards for exploitation is important for the
agent to efficiently learn and eventually solve the task. This posed the following
research question:

1. How can intrinsically motivated reinforcement learning agents effec-
tively balance exploration and exploitation in the single-agent setting?

We discussed a plethora of challenges introduced by naively combining intrinsic
and extrinsic rewards. Motivated by these challenges, we proposed the decoupled
reinforcement learning (DeRL) framework, in which the agent learns two sepa-
rate policies for exploration and exploitation. This decoupling mechanism led to
more sample efficient training and less sensitivity to hyperparameters that deter-
mine the balance of exploration and exploitation in several exploration-focused
tasks. We believe that the latter result is particularly important for the practi-
cal application of reinforcement learning algorithms and exploration techniques,
which can often be highly sensitive to hyperparameters. Our research further dis-
covered that distribution shift between decoupled exploration and exploitation
policies represents a significant challenge and motivates further research in this
area. We also note that while DeRL has been demonstrated to be less sensitive

149

150 Chapter 8. Conclusion

to hyperparameters, the selection of hyperparameters can still have a significant
impact on the performance of the algorithm, and further research is needed to un-
derstand the impact of decoupling exploration and exploitation in more complex
environments.

Subsequent chapters focused on the setting of multi-agent reinforcement learn-
ing. First, Chapter 4 presented a comprehensive benchmark of nine deep MARL
algorithms across 25 common-reward environments. To the best of our knowl-
edge, this was the first benchmark that evaluated a wide range of deep MARL
algorithms across a diverse set of environments with a consistent evaluation pro-
tocol. The reported results shed light on the strengths and weaknesses of different
MARL algorithms and identified opportunities for future research. Most notably,
the benchmark revealed the inefficiency of existing MARL algorithms in solving
problems with highly sparse rewards. In addition to the reported results, we have
made the benchmark codebase publicly available to facilitate future research in
this area which since has been adopted for MARL research (e.g., Leroy et al.,
2023; Torbati et al., 2023).

Building on the insights gained from the benchmark, Chapter 5 studied the
problem of exploration and efficient learning in multi-agent environments with
sparse rewards and focused on the second research question:

2. How can multiple learning agents share experiences with each other in
order to explore and learn more efficiently?

We proposed the shared experience actor-critic (SEAC) algorithm that allows
agents to share experiences with each other, enabling them to learn different and
specialised policies in a more efficient manner. More specifically, SEAC shares ex-
periences of multiple agents with each other and uses simple off-policy correction
to account for the differences in data distributions of agents. We compared SEAC
to other methods of data sharing, independent learning, and more sophisticated
CTDE algorithms and found SEAC to significantly outperform all baselines in
both sample efficiency and converged performance despite its simplicity. These
results indicated the opportunity that lies in considering the distributed data
gathered by all agents for efficient MARL training, and the benefits that can
by obtained by enabling agents to learn similar but not identical policies. We
also demonstrated that similar experience sharing mechanisms can be applied to
off-policy algorithms, which has since been extended in subsequent work. The ex-
perience sharing proposed in SEAC relies on the assumption of symmetry of the

151

transition and reward functions across agents. We observed that this assumption
holds across a plethora of multi-agent problems but it remains an open ques-
tion how to relax this assumption and extend experience sharing to more general
multi-agent problems.

Chapter 6 focused on the problem of exploration in value-based MARL algo-
rithms that have previously often resorted to simple exploration strategies such
as ϵ-greedy policies. Motivated by the unique challenge in MARL for agents to
learn about their interactions with each other, we studied the following research
question:

3. How can multiple learning agents identify states and actions with the
potential for cooperation and guide their exploration towards these states
and actions?

To incentivise agents to explore such states and actions with the potential for in-
teractions across agents, we proposed the ensemble value functions for multi-agent
exploration (EMAX) framework that can extend existing value-based MARL al-
gorithms with improved exploration towards cooperative states and actions, and
more robust training. We demonstrated the benefits of EMAX first as an exten-
sion of independent value-based learning in multiple environments with individual
rewards for all agents, before extending value decomposition algorithms for co-
operative MARL. The results showed that EMAX can significantly improve the
sample efficiency of value-based MARL algorithms in a range of mixed-objective
and cooperative environments, and provided ablations to understand the indi-
vidual contributions of the components of the EMAX framework. We note that
EMAX and our investigation is limited to value-based MARL algorithms and has
been studied in cooperative and mixed-objective environments. It remains an
open question how to extend EMAX to more general multi-agent problems and
to policy-gradient algorithms.

Lastly, Chapter 7 presented a case study for the application of MARL to
warehouse automation. We formulated the problem of warehouse automation
as a multi-agent reinforcement learning problem, and described two simulators
that have been developed to study MARL in this setting. Motivated by the
challenge of scaling MARL solutions to warehouses of realistic scale, we proposed
a hierarchical decomposition of the problem and an action masking procedure
that can be used to reduce the effective action space agents need to consider. We
demonstrated the benefits of this approach in a simulated warehouse environment,

152 Chapter 8. Conclusion

and showed that the proposed algorithm can significantly improve the efficiency
of warehouse operations compared to baseline MARL algorithms and industry-
standard heuristics. These results demonstrated the promise of MARL for real-
world applications, and the potential for future research in this area.

8.1 Directions for Future Work

This thesis provides a foundation for research focused on efficient exploration in
single-agent and multi-agent reinforcement learning. We conclude this thesis with
several directions for future research that build on the contributions of this thesis
in the hope that other researchers will be inspired to further explore these ideas.

DeRL demonstrates that there are notable benefits to considering the different
requirements of exploration and exploitation in reinforcement learning. Further
research has already built upon this work to consider the application of DeRL
to more complex environments (Chen et al., 2022) and extended it with opti-
misation of dependent hyperparameters using constrained optimisation. They
also found that the optimisation can become more stable when training the ex-
ploitation policy on both on-policy data of the policy itself as well as off-policy
data of the exploration policy. This further supports the discussion in our work
that the distribution shift between exploration and exploitation policies can be
a significant challenge for decoupling exploration and exploitation. Further ideas
from offline RL may be integrated to limit this distribution shift and improve the
stability of training the exploitation policy (McInroe et al., 2024). Furthermore,
the application of DeRL to MARL could be an interesting to explore, as the
decoupling of exploration and exploitation could also lead to more efficient and
robust exploration strategies in this setting.

Experience sharing with SEAC relies on an assumption of symmetry of the
transition function and reward functions across agents. As demonstrated in Chap-
ter 5, this assumption holds in a variety of multi-agent settings and can enable
significant improvements in sample efficiency and converged performance. We
presented evaluation results in a variety of mixed-objective and cooperative multi-
agent tasks, but have not considered competitive settings in which the symmetry
assumption might also hold. For example in various two-player zero-sum games,
such as chess, the symmetry assumption might hold and experience sharing may
be applied and provide significant benefits. This setting might also further es-

8.1. Directions for Future Work 153

tablish the similarities of our experience sharing paradigm and the concept of
self-play commonly applied in two-player zero-sum games. Furthermore, future
research could consider to relax SEAC’s symmetry assumption to see whether the
experience sharing idea can be applicable to more general multi-agent problems.
Lastly, this thesis considered the application of experience sharing primarily to
independent actor-critic algorithms, and presented preliminary experiments with
independent value-based MARL algorithms. It would be interesting to consider
the application of experience sharing to further algorithms such as multi-agent
policy gradient algorithms with centralised critics to understand the benefits of
experience sharing for a broader range of MARL algorithms.

The EMAX framework presented in this thesis provides a novel approach to
exploration that provides significant benefits to sample efficiency and optimisa-
tion robustness. However, EMAX is currently limited to value-based MARL algo-
rithms and was largely studied in cooperative environments. Future work could
consider evaluation in competitive two-player games (Pérolat et al., 2022; McAleer
et al., 2023; Sokota et al., 2023) and extend EMAX to multi-agent actor-critic
algorithms such as MAPPO and IPPO that have been shown to be effective in
cooperative MARL (Papoudakis et al., 2021; Yu et al., 2022). In this case, ensem-
bles of value functions and policies could be trained for each agent, with similar
target computation for the critic, potentially advantage estimation across the en-
semble, and UCB policies across actors to guide exploration. A further limitation
of the current EMAX approach is the considerable computation cost of training
ensembles of value functions. Future work could investigate the distribution of
EMAX ensemble computation across multiple compute devices to reduce training
and inference time. Alternatively, or in addition to such distributed computation,
future work could investigate the application of techniques to approximate costly
ensembles using a single network through hypernetworks (Dwaracherla et al.,
2020) and latent-conditioned models (Shen and How, 2023). These techniques
have the potential to significantly reduce the computational cost of EMAX and,
thereby, making it more widely accessible.

Orthogonal to the research presented in this thesis, we believe that there is a
significant opportunity in the current push towards larger and more generalisable
machine learning models for exploration in RL and MARL. First, if we are able
to train generalisable decision-making agents that are capable of transferring to
novel tasks with limited or no further training required, then training overall may

154 Chapter 8. Conclusion

become significantly more efficient since the same agents can be trained once and
applied to many tasks that previously necessitated further training. Second, by
leveraging larger and more generalisable models, RL and MARL training can
leverage prior knowledge about decision making and already learned tasks to
inform exploration. For example, agents that have general understanding of com-
mon concepts in the world might have sensible hypotheses about how a novel
decision-making problem might work. They might infer that ladders likely en-
able to agent to climb up, or that a key is likely to open a door. Such prior
knowledge is currently absent from the majority of RL agents that are typically
trained from scratch in every task, and represents a great opportunity to enable a
true step-change in the efficiency of learning how to act. In the past few years, sev-
eral research directions have emerged that follow this line of thought. Literature
on open-ended learning aims to train agents that continually learn and improve
their capabilities over time. One paradigm to achieve such continual learning is
unsupervised environment design that defines an automated curriculum of diverse
tasks that cater to the current capabilities of the agent and, thereby, enables the
agent to learn more efficiently and continue to improve (Dennis et al., 2020; Jiang
et al., 2021; Parker-Holder et al., 2022). By combining such automated curricu-
lum with large transformer models and large-scale computational resources, Team
et al. (2023a) trained an agent that can solve a wide range of challenging tasks
and demonstrates an impressive ability to adapt to new tasks from few demon-
strations or trials. Another research direction directly leverages large language
models and their capability to generalise as agents in complex decision-making
tasks with no or limited fine-tuning (Wang et al., 2023; Team et al., 2024).

The rate of progress in the field of RL and MARL in the past decade has been
remarkable, and we believe that the field is poised to make further significant
strides in the coming years. We hope that the research presented in this thesis
will inspire future work and be built upon to obtain more efficient exploration
approaches in RL and MARL, and that the field will enable the development
of decision-making agents that can operate in and solve real-world problems to
benefit society at large.

Appendix A

Decoupled Reinforcement Learning

A.1 Hyperparameter Optimisation

A gridsearch was conducted to identify the best hyperparameter configuration
for each algorithm in both environments. In order to keep the search feasible, a
hyperparameter search for DeepSea was conducted in DeepSea N = 20 and the
same identified configuration was applied in all other DeepSea tasks. Similarly,
for the Hallway environment a hyperparameter search was conducted in Hallway
Nl = Nr = 10. Every gridsearch configuration is evaluated using three different
random seeds with results being averaged across all seeds.

First, the best hyperparameters for A2C and PPO baselines were identified by
training each configuration in the respective training task of both environments
with Count intrinsic rewards. We chose to conduct the hyperparameter search
with intrinsic rewards as both baselines do perform poorly in most tasks without
any intrinsic rewards which make different hyperparameter configurations hardly
distinguishable. The Count intrinsic reward was chosen as it does not require any
hyperparameter tuning in contrast to other intrinsic reward definitions. For all
considered hyperparameter combinations, we conduct training in the same way
as described in Section 3.3 with λ = 1. The best hyperparameter configuration is
chosen as the one that leads to highest maximum evaluation returns. If multiple
configurations reach the same maximum evaluation returns then the one with the
highest average evaluation returns computed over all 100 evaluations throughout
training is considered the best. Such latter metric considers achieved returns
alongside sample efficiency. Identified hyperparameters for A2C and PPO in both
environments can be found in Table A.1 and Table A.2. All considered values

155

156 Appendix A. Decoupled Reinforcement Learning

of hyperparameters are listed with the best-identified combination highlighted in
bold.

Table A.1: Hyperparameters for A2C baseline.

Hyperparameter DeepSea Hallway

Normalise observations False, True False, True
Normalise rewards False, True False, True
Learning rate 3e−4, 1e−3 3e−4, 1e−3

Nonlinearity Tanh, ReLU Tanh, ReLU
Maximum gradient norm 0.5, 10.0, 40.0 0.5, 10.0, 40.0
Entropy loss coefficient 1e−4, 3e−4, 7e−4, 1e−3 1e−4, 3e−4, 7e−4, 1e−3

Actor architecture FC (64, 64) FC (64, 64)
Critic architecture FC (64, 64) FC (64, 64)
N-steps 5 5
Adam ϵ 0.001 0.001
Value loss coefficient 0.5 0.5

Table A.2: Hyperparameters for PPO baseline.

Hyperparameter DeepSea Hallway

Normalise observations False, True False, True
Normalise rewards False, True False, True
Learning rate 3e−4, 1e−3 3e−4, 1e−3

Nonlinearity Tanh, ReLU Tanh, ReLU
Maximum gradient norm 0.5, 10.0, 40.0 0.5, 10.0, 40.0
Entropy loss coefficient 1e−4, 3e−4, 7e−4, 1e−3 1e−4, 3e−4, 7e−4, 1e−3

Actor architecture FC (64, 64) FC (64, 64)
Critic architecture FC (64, 64) FC (64, 64)
N-steps 10 10
Adam ϵ 0.001 0.001
Value loss coefficient 0.5 0.5
Number of epochs 10 10
Number of minibatches 4 4
Clipping ratio 0.1 0.1
Clip value loss True True

Following the hyperparameter search of A2C and PPO with Count intrinsic
rewards, a search over hyperparameters of all parameterised intrinsic reward def-

A.1. Hyperparameter Optimisation 157

initions was conducted. The setup of the hyperparameter search is identical to
the one described above and the best identified hyperparameter configuration
for the baseline algorithms are used in the gridsearch for intrinsic rewards. Best
identified hyperparameters and all considered hyperparameter configurations can
be found in Tables A.3 to A.6.

Table A.3: Hyperparameters for Hash-Count.

Hyperparameter DeepSea Hallway

A2CHash key dimensionality 16, 32, 64, 128 16, 32, 64, 128

PPOHash key dimensionality 16, 32, 64, 128 16, 32, 64, 128

Table A.4: Hyperparameters for ICM.

Hyperparameter DeepSea Hallway

G
en

er
al

z architecture FC (64, 64) FC (64, 64)
z(s) dimensionality 16 16
Forward prediction architecture FC (64) FC (64)
Inverse prediction architecture FC (64) FC (64)

A
2C

Learning rate 1e−7, 5e−7, 1e−6, 5e−6, 1e−5 1e−7, 5e−7, 1e−6, 5e−6, 1e−5

Forward loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0
Inverse loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0

PP
O

Learning rate 1e−7, 5e−7, 1e−6, 5e−6, 1e−5 1e−7, 5e−7, 1e−6, 5e−6, 1e−5

Forward loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0
Inverse loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0

Table A.5: Hyperparameters for RND.

Hyperparameter DeepSea Hallway

General z architecture FC (64, 64) FC (64, 64)
z(s) dimensionality 16 16

A2C Learning rate 1e−7, 5e−7, 1e−6, 5e−6, 1e−5 1e−7, 5e−7, 1e−6, 5e−6, 1e−5

PPO Learning rate 1e−7, 5e−7, 1e−6, 5e−6, 1e−5 1e−7, 5e−7, 1e−6, 5e−6, 1e−5

Based on the aforementioned hyperparameters, a gridsearch for all DeRL al-
gorithms, DeA2C, DePPO and DeDQN, was conducted using the best identified
A2C and Count intrinsic rewards to train the exploration policy. Identified con-
figurations are listed in Tables A.7 to A.9. Table A.10 shows hyperparameters for
DeRL algorithms with ICM intrinsic rewards used to train the A2C exploration

158 Appendix A. Decoupled Reinforcement Learning

Table A.6: Hyperparameters for RIDE.

Hyperparameter DeepSea Hallway

G
en

er
al

z architecture FC (64, 64) FC (64, 64)
z(s) dimensionality 16 16
Forward prediction architecture FC (64) FC (64)
Inverse prediction architecture FC (64) FC (64)
State count Count Count

A
2C

Learning rate 1e−7, 5e−7, 1e−6, 5e−6, 1e−5 1e−7, 5e−7, 1e−6, 5e−6, 1e−5

Forward loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0
Inverse loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0

PP
O

Learning rate 1e−7, 5e−7, 1e−6, 5e−6, 1e−5 1e−7, 5e−7, 1e−6, 5e−6, 1e−5

Forward loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0
Inverse loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0

policy. The same general architecture is used for ICM when applied alongside
DeRL as reported in Table A.4.

Table A.7: Hyperparameters for DeA2C.

Hyperparameter DeepSea Hallway

Importance sampling Default IS weights, Retrace(λ) Default IS weights, Retrace(λ)
Learning rate 3e−4, 1e−3 3e−4, 1e−3

Nonlinearity Tanh, ReLU Tanh, ReLU
Maximum gradient norm 0.5 0.5
Entropy loss coefficient 0.0, 1e−6, 1e−5, 1e−4 0.0, 1e−6, 1e−5, 1e−4

Actor architecture FC (64, 64) FC (64, 64)
Critic architecture FC (64, 64) FC (64, 64)
N-steps 5 5
Adam ϵ 0.001 0.001
Value loss coefficient 0.5 0.5

A.1. Hyperparameter Optimisation 159

Table A.8: Hyperparameters for DePPO.

Hyperparameter DeepSea Hallway

Importance sampling Default IS weights Default IS weights
Learning rate 3e−4, 1e−3 3e−4, 1e−3

Nonlinearity Tanh, ReLU Tanh, ReLU
Maximum gradient norm 0.5 0.5
Entropy loss coefficient 0.0, 1e−6, 1e−5, 1e−4 0.0, 1e−6, 1e−5, 1e−4

Actor architecture FC (64, 64) FC (64, 64)
Critic architecture FC (64, 64) FC (64, 64)
N-steps 10 10
Adam ϵ 0.001 0.001
Value loss coefficient 0.5 0.5
Number of epochs 10 10
Number of minibatches 4 4
Clipping ratio 0.1 0.1
Clip value loss True True

Table A.9: Hyperparameters for DeDQN.

Hyperparameter DeepSea Hallway

Learning rate 1e−4, 3e−4, 1e−3 1e−4, 3e−4, 1e−3

Soft target update τ 0.01, 0.001 0.01, 0.001
Batch size 128, 256, 512 128, 256, 512
N-steps 5 5
Nonlinearity Tanh, ReLU Tanh, ReLU
Replay buffer Default, Prioritised Default, Prioritised
Replay buffer capacity 100,000 100,000
Maximum gradient norm 0.5 0.5
DQN architecture FC (64, 64) FC (64, 64)
Adam ϵ 0.001 0.001

160 Appendix A. Decoupled Reinforcement Learning

Table A.10: Hyperparameters for DeRL with ICM.

Hyperparameter DeepSea Hallway

D
eA

2C

Learning rate 1e−7, 5e−7, 1e−6, 5e−6, 1e−5 1e−7, 5e−7, 1e−6, 5e−6, 1e−5

Forward loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0
Inverse loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0

D
eP

PO

Learning rate 1e−7, 5e−7, 1e−6, 5e−6, 1e−5 1e−7, 5e−7, 1e−6, 5e−6, 1e−5

Forward loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0
Inverse loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0

D
eD

Q
N Learning rate 1e−7, 5e−7, 1e−6, 5e−6, 1e−5 1e−7, 5e−7, 1e−6, 5e−6, 1e−5

Forward loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0
Inverse loss coefficient 0.5, 1.0, 5.0, 10.0 0.5, 1.0, 5.0, 10.0

A.2. Evaluation Results 161

A.2 Evaluation Results

In this section, we provide tables containing maximum evaluation returns for all
baselines and DeRL algorithms in every task. As described in Section 3.3, average
returns and stratified bootstrap 95% confidence intervals are computed using
5,000 samples across five random seeds for the best identified hyperparameter
configuration as reported in Appendix A.1. For maximum evaluation returns,
we identify the single evaluation out of all 100 conducted evaluations with the
maximum evaluation returns averaged across samples and report its value with
the standard deviation across all samples. Within tables, the highest performing
algorithms for each task are highlighted in bold together with every algorithm
within a single standard deviation of the highest return. Besides these tables,
we also provide learning curves for all baselines and DeRL algorithms in every
evaluated task. In order to maintain visual clarity, we average two following
evaluations (of the total of 100 evaluations throughout training) for a total of 50
plotted evaluation points for each algorithm.

Figure A.1 and Table A.11 show the learning curves over average evaluation
returns and a table of maximum evaluation returns for all algorithms in DeepSea
tasks for the best intrinsic reward per algorithm. Figure A.3 and Table A.12
show the same for Hallway tasks.

To compare evaluated algorithms and intrinsic rewards across all tasks, we
refer to the tables of maximum evaluation returns as well as the learning curves
in Figure A.2 for DeepSea, and Figures A.4 and A.5 for Hallway.

162 Appendix A. Decoupled Reinforcement Learning

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0
Ep

iso
de

 re
tu

rn

A2C Count
PPO ICM
DeA2C Count
DePPO ICM
DeDQN Count

(a) DeepSea N = 10

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

A2C Hash-Count
PPO Hash-Count
DeA2C Count
DePPO Count
DeDQN Count

(b) DeepSea N = 14

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

A2C Count
PPO Hash-Count
DeA2C Count
DePPO ICM
DeDQN Count

(c) DeepSea N = 20

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

A2C ICM
PPO Hash-Count
DeA2C ICM
DePPO Count
DeDQN Count

(d) DeepSea N = 24

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

A2C ICM
PPO Count
DeA2C ICM
DePPO ICM
DeDQN ICM

(e) DeepSea N = 30

Figure A.1: Average evaluation returns and 95% confidence intervals for A2C, PPO
and DeRL with the highest achieving intrinsic reward in all DeepSea tasks.

Table A.11: Maximum evaluation returns in the DeepSea environment with a single
standard deviation.

Algorithm \ Task DeepSea 10 DeepSea 14 DeepSea 20 DeepSea 24 DeepSea 30

A2C 0.99 0.00 0.00 0.00 0.00
A2C Count 0.99 0.99 0.99 0.79 ± 0.40 −0.01
A2C Hash-Count 0.99 0.99 0.64± 0.48 0.59 ± 0.49 0.00
A2C ICM 0.99 0.99 0.70± 0.45 0.79 ± 0.40 0.39 ± 0.49
A2C RND 0.06± 0.24 0.19± 0.40 0.00 0.00 0.00
A2C RIDE 0.00 0.00 0.00 0.00 0.00
PPO 0.00 0.00 0.00 0.00 0.00
PPO Count 0.99 0.79± 0.40 0.73± 0.44 0.59 ± 0.49 0.59 ± 0.49
PPO Hash-Count 0.99 0.99 0.59± 0.49 0.79 ± 0.40 0.59 ± 0.49
PPO ICM 0.99 0.39± 0.49 0.31± 0.46 0.79 ± 0.40 0.19 ± 0.40
PPO RND 0.38± 0.48 0.19± 0.40 0.00 0.00 0.00
PPO RIDE 0.77± 0.41 0.00 0.15± 0.36 0.00 0.00
DeA2C Count 0.99 0.99 0.90± 0.28 0.19± 0.40 0.16 ± 0.37
DeA2C ICM 0.99 0.82± 0.37 0.66± 0.47 0.39± 0.49 0.33 ± 0.47
DePPO Count 0.99 0.99 0.08± 0.28 0.82 ± 0.37 0.00
DePPO ICM 0.99 0.66± 0.47 0.09± 0.30 0.00 0.00
DeDQN Count 0.99 0.99 0.44± 0.49 0.79 ± 0.40 0.19 ± 0.40
DeDQN ICM 0.99 0.99 0.30± 0.46 0.59 ± 0.49 0.44 ± 0.49

A.2. Evaluation Results 163

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(a) DeepSea N = 10 A2C

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(b) DeepSea N = 10 PPO

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(c) DeepSea N = 10 DeRL

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(d) DeepSea N = 14 A2C

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(e) DeepSea N = 14 PPO

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(f) DeepSea N = 14 DeRL

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(g) DeepSea N = 20 A2C

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(h) DeepSea N = 20 PPO

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(i) DeepSea N = 20 DeRL

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(j) DeepSea N = 24 A2C

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(k) DeepSea N = 24 PPO

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(l) DeepSea N = 24 DeRL

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(m) DeepSea N = 30 A2C

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(n) DeepSea N = 30 PPO

0 20000 40000 60000 80000 100000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

s

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(o) DeepSea N = 30 DeRL

Figure A.2: Average evaluation returns and 95% confidence intervals for A2C (first
column), PPO (second column) and DeRL (third column) with all intrinsic rewards
for all DeepSea tasks.

164 Appendix A. Decoupled Reinforcement Learning

Table A.12: Maximum evaluation returns in the Hallway environment with a single
standard deviation.

Algorithm \ Task Hallway 10-0 Hallway 10-10 Hallway 20-0 Hallway 20-20 Hallway 30-0 Hallway 30-30

A2C 0.68± 0.34 0.51± 0.42 0.42 ± 0.34 0.50 ± 0.25 0.44 ± 0.22 0.46 ± 0.07
A2C Count 0.85 0.85 0.70 0.60 0.52 ± 0.06 0.14± 0.24
A2C Hash-Count 0.85 0.85 0.70 0.60 0.52 ± 0.06 0.22± 0.27
A2C ICM 0.68± 0.34 0.68± 0.34 0.66 ± 1.01 1.08 ± 0.76 1.58 ± 1.50 1.09 ± 1.15
A2C RND 0.12± 0.35 −0.07± 0.09 −0.17± 0.15 −0.24± 0.20 −0.24 ± 0.28 −0.12± 0.24
A2C RIDE 0.85 0.85 0.70 0.62 ± 0.04 0.55 0.43 ± 0.06
PPO 0.00 0.00 0.00 0.00 0.00 0.00
PPO Count 0.00 0.00 0.00 0.00 0.00 0.00
PPO Hash-Count 0.50± 0.41 0.27± 0.39 0.00 0.00 0.00 0.00
PPO ICM 0.48± 0.39 0.40± 0.41 0.28± 0.34 0.39 ± 0.32 0.08 ± 0.16 0.10± 0.20
PPO RND 0.13± 0.37 0.47± 0.44 0.02± 0.31 0.17± 0.40 −0.04± 0.32 0.00
PPO RIDE 0.10± 0.35 0.26± 0.44 −0.03± 0.37 0.13± 0.41 −0.19± 0.28 −0.01± 0.40
DeA2C Count 0.85 0.85 0.60 0.70 0.55 0.43 ± 0.06
DeA2C ICM 0.85 0.85 1.08 ± 0.76 1.08 ± 0.76 1.38 ± 1.68 1.69 ± 1.40
DePPO Count 0.85 0.85 0.56 ± 0.28 0.60 0.52 ± 0.06 0.43 ± 0.06
DePPO ICM 0.85 0.85 1.08 ± 0.76 0.62 ± 0.04 0.55 0.43 ± 0.06
DeDQN Count 0.13± 0.37 0.11± 0.37 0.00 0.00 0.00 0.00
DeDQN ICM 0.27± 0.77 0.39± 0.82 0.06± 0.36 0.35 ± 1.12 0.00 0.00

0 20000 40000 60000 80000 100000
Episode

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

A2C Count
PPO Hash-Count
DeA2C Count
DePPO ICM
DeDQN ICM

(a) Hallway Nl = 10, Nr = 0

0 20000 40000 60000 80000 100000
Episode

0.5

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

A2C RIDE
PPO ICM
DeA2C ICM
DePPO ICM
DeDQN ICM

(b) Hallway Nl = 20, Nr = 0

0 20000 40000 60000 80000 100000
Episode

0

1

2

3

Ep
iso

de
 re

tu
rn

A2C ICM
PPO ICM
DeA2C ICM
DePPO ICM
DeDQN ICM

(c) Hallway Nl = 30, Nr = 0

0 20000 40000 60000 80000 100000
Episode

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

A2C Count
PPO RIDE
DeA2C Count
DePPO Count
DeDQN ICM

(d) Hallway Nl = 10, Nr =
10

0 20000 40000 60000 80000 100000
Episode

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ep
iso

de
 re

tu
rn

A2C ICM
PPO ICM
DeA2C ICM
DePPO ICM
DeDQN Count

(e) Hallway Nl = 20, Nr =
20

0 20000 40000 60000 80000 100000
Episode

0

1

2

3

Ep
iso

de
 re

tu
rn

A2C ICM
PPO ICM
DeA2C ICM
DePPO ICM
DeDQN Count

(f) Hallway Nl = 30, Nr =
30

Figure A.3: Average evaluation returns and 95% confidence intervals for A2C, PPO
and DeRL with the highest achieving intrinsic reward in all Hallway tasks.

A.2. Evaluation Results 165

0 20000 40000 60000 80000 100000
Episode

0.0

0.5

1.0

1.5
Ep

iso
de

 re
tu

rn

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(a) Hallway Nl = 10, Nr = 0
A2C

0 20000 40000 60000 80000 100000
Episode

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(b) Hallway Nl = 10, Nr = 0
PPO

0 20000 40000 60000 80000 100000
Episode

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(c) Hallway Nl = 10, Nr = 0
DeRL

0 20000 40000 60000 80000 100000
Episode

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(d) Hallway Nl = 10, Nr =
10 A2C

0 20000 40000 60000 80000 100000
Episode

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(e) Hallway Nl = 10, Nr =
10 PPO

0 20000 40000 60000 80000 100000
Episode

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(f) Hallway Nl = 10, Nr =
10 DeRL

0 20000 40000 60000 80000 100000
Episode

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ep
iso

de
 re

tu
rn

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(g) Hallway Nl = 20, Nr = 0
A2C

0 20000 40000 60000 80000 100000
Episode

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ep
iso

de
 re

tu
rn

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(h) Hallway Nl = 20, Nr = 0
PPO

0 20000 40000 60000 80000 100000
Episode

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ep
iso

de
 re

tu
rn

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(i) Hallway Nl = 20, Nr = 0
DeRL

0 20000 40000 60000 80000 100000
Episode

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ep
iso

de
 re

tu
rn

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(j) Hallway Nl = 20, Nr =
20 A2C

0 20000 40000 60000 80000 100000
Episode

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ep
iso

de
 re

tu
rn

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(k) Hallway Nl = 20, Nr =
20 PPO

0 20000 40000 60000 80000 100000
Episode

0.5

0.0

0.5

1.0

1.5

2.0

2.5

Ep
iso

de
 re

tu
rn

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(l) Hallway Nl = 20, Nr = 20
DeRL

Figure A.4: Average evaluation returns and 95% confidence intervals for A2C (first
column), PPO (second column) and DeRL (third column) with all intrinsic rewards
for all Hallway tasks with Nl ∈ {10, 20}.

166 Appendix A. Decoupled Reinforcement Learning

0 20000 40000 60000 80000 100000
Episode

0

1

2

3

Ep
iso

de
 re

tu
rn

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(a) Hallway Nl = 30, Nr = 0
A2C

0 20000 40000 60000 80000 100000
Episode

0

1

2

3

Ep
iso

de
 re

tu
rn

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(b) Hallway Nl = 30, Nr = 0
PPO

0 20000 40000 60000 80000 100000
Episode

0

1

2

3

Ep
iso

de
 re

tu
rn

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(c) Hallway Nl = 30, Nr = 0
DeRL

0 20000 40000 60000 80000 100000
Episode

0

1

2

3

Ep
iso

de
 re

tu
rn

A2C
A2C Count
A2C Hash-Count
A2C ICM
A2C RND
A2C RIDE

(d) Hallway Nl = 30, Nr =
30 A2C

0 20000 40000 60000 80000 100000
Episode

0

1

2

3

Ep
iso

de
 re

tu
rn

PPO
PPO Count
PPO Hash-Count
PPO ICM
PPO RND
PPO RIDE

(e) Hallway Nl = 30, Nr =
30 PPO

0 20000 40000 60000 80000 100000
Episode

0

1

2

3

Ep
iso

de
 re

tu
rn

DeA2C Count
DeA2C ICM
DePPO Count
DePPO ICM
DeDQN Count
DeDQN ICM

(f) Hallway Nl = 30, Nr =
30 DeRL

Figure A.5: Average evaluation returns and 95% confidence intervals for A2C (first
column), PPO (second column) and DeRL (third column) with all intrinsic rewards
for all Hallway tasks with Nl = 30.

A.3. Hyperparameter Sensitivity 167

A.3 Hyperparameter Sensitivity

In this section, we provide further plots and tables containing maximum and
average achieved evaluation returns for both sets of hyerparameter sensitivity ex-
periments. As described in Section 3.4.1, we evaluate both baselines and DeRL
algorithms with varying intrinsic reward coefficients, λ, and rate of decay of in-
trinsic rewards. Both experiments were conducted in DeepSea 10 and Hallway
Nl = Nr = 10. We provide tables showing the maximum evaluation returns and
bar plots indicating the varying average evaluation returns for various parame-
terisation of intrinsic rewards where not yet shown within Section 3.4.1. Within
tables, the highest performing configuration for a single algorithm is highlighted
in bold within each row with all configurations within a single standard deviation
of the highest return.

Figure A.6 and Figure A.7 show average evaluation returns for baselines
with Hash-Count, RND, and RIDE intrinsic rewards with varying values of λ ∈
{0.01, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 10.0, 100.0} in DeepSea 10 and HallwayNl = Nr =
10, respectively. Table A.13 and Table A.14 show the maximum evaluation re-
turns for all baselines and DeRL with all intrinsic rewards and varying λ values
in DeepSea 10 and Hallway Nl = Nr = 10, respectively.

Similarly, we evaluate all baselines and DeRL algorithms with varying rate
of decay of intrinsic rewards in DeepSea and Hallway. For count-based intrinsic
rewards, the rate of decay can be determined by the increment of the state count
N(s). By default, the count is incremented by 1 for each state occurrence. For
this analysis, we consider increments {0.01, 0.1, 0.2, 1.0, 5.0, 10.0, 100.0}. For deep
prediction-based intrinsic rewards, ICM, RND and RIDE, the rate of decay is de-
termined by their learning rates. We consider learning rates {1e−9, 1e−8, 2e−8, 1e−7,

5e−7, 1e−6, 1e−5, 1e−4, 1e−3}. Figure A.8 and Figure A.9 show average evaluation
returns for baselines with Hash-Count, RND, and RIDE intrinsic rewards with
varying speeds of decay in DeepSea 10 and Hallway Nl = Nr = 10, respectively.
Tables A.15 and A.16 show the maximum evaluation returns for all baselines and
DeRL with count-based and prediction-based intrinsic rewards, respectively, for
varying rates of decay in DeepSea 10. Tables A.17 and A.18 show identical tables
for Hallway Nl = Nr = 10.

168 Appendix A. Decoupled Reinforcement Learning

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(a) A2C Hash-Count

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(b) A2C RND

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(c) A2C RIDE

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(d) PPO Hash-Count

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(e) PPO RND

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(f) PPO RIDE

Figure A.6: Average evaluation returns and 95% confidence intervals for A2C and
PPO with Hash-Count, RND and RIDE intrinsic rewards in DeepSea 10 with λ ∈
{0.01, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 10.0, 100.0}.

Table A.13: Maximum evaluation returns with a single standard deviation in DeepSea
10 for varying λ.

Algorithm \ λ 0.01 0.1 0.25 0.5 1.0 2.0 4.0 10.0 100.0

A2C Count 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.79± 0.30 0.79± 0.30
A2C Hash-Count 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.79± 0.30 0.39± 0.40
A2C ICM 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.59± 0.40
A2C RND 0.99 0.39± 0.40 0.19± 0.30 0.00 0.20± 0.30 0.00 0.19± 0.30 0.00 −0.01
A2C RIDE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PPO Count 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
PPO Hash-Count 0.59± 0.40 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.79± 0.30
PPO ICM 0.00 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.39± 0.40
PPO RND 0.20± 0.30 0.00 0.39± 0.40 0.00 0.39± 0.40 0.00 −0.01 0.19± 0.30 −0.01
PPO RIDE 0.79± 0.30 0.79± 0.30 0.79± 0.30 0.99 0.99 0.79± 0.30 0.99 0.79± 0.30 0.59± 0.40

DeA2C Count 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
DeA2C ICM 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
DePPO Count 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.59± 0.40
DePPO ICM 0.99 0.99 0.99 0.99 0.99 0.99 0.59± 0.40 0.39± 0.40 0.19± 0.30
DeDQN Count 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
DeDQN ICM 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.79± 0.30

A.3. Hyperparameter Sensitivity 169

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(a) A2C Hash-Count

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(b) A2C RND

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(c) A2C RIDE

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(d) PPO Hash-Count

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(e) PPO RND

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(f) PPO RIDE

Figure A.7: Average evaluation returns with 95% confidence intervals for A2C and
PPO with Hash-Count, RND and RIDE intrinsic rewards in Hallway Nl = Nr = 10
with λ ∈ {0.01, 0.1, 0.25, 0.5, 1.0, 2.0, 4.0, 10.0, 100.0}.

Table A.14: Maximum evaluation returns with a single standard deviation in Hallway
Nl = Nr = 10 for varying λ.

Algorithm \ λ 0.01 0.1 0.25 0.5 1.0 2.0 4.0 10.0 100.0

A2C Count 0.68± 0.26 0.51± 0.34 0.85 0.85 0.85 0.85 0.85 0.51± 0.34 0.80
A2C Hash-Count 0.68± 0.26 0.51± 0.34 0.85 0.85 0.85 0.85 0.85 0.51± 0.34 0.80
A2C ICM 0.17± 0.26 0.68± 0.26 0.85 0.85 0.51± 0.34 0.51± 0.34 0.85 0.89± 0.72 0.28± 0.40
A2C RND 0.00 0.34± 0.34 0.13± 0.32 −0.06± 0.07 −0.04± 0.06 −0.08± 0.08 −0.04± 0.06 −0.06± 0.07 −0.16± 0.06
A2C RIDE 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85 0.85

PPO Count 0.00 0.00 0.00 0.00 0.00 0.00 −0.06± 0.04 0.00 −0.06± 0.07
PPO Hash-Count 0.00 0.00 0.00 0.00 0.17± 0.26 0.64± 0.24 0.32± 0.32 0.17± 0.25 0.14± 0.27
PPO ICM 0.00 0.51± 0.34 0.26± 0.38 0.32± 0.32 0.33± 0.33 0.32± 0.36 0.33± 0.34 0.42± 0.40 0.24± 0.40
PPO RND 0.16± 0.24 0.28± 0.37 0.32± 0.32 0.48± 0.32 0.80 0.61± 0.31 0.64± 0.24 0.60± 0.30 0.81± 0.01
PPO RIDE 0.10± 0.28 0.26± 0.37 0.26± 0.37 0.30± 0.57 0.43± 0.37 0.30± 0.57 0.29± 0.57 0.30± 0.57 0.26± 0.37

DeA2C Count 0.17± 0.26 0.68± 0.26 0.85 0.85 0.85 0.85 0.82± 0.02 0.84± 0.02 0.82± 0.02
DeA2C ICM 0.17± 0.26 0.85 0.68± 0.26 0.85 0.85 0.85 0.67± 0.26 0.34± 0.34 0.81± 0.01
DePPO Count 0.34± 0.34 0.68± 0.26 0.85 0.85 0.85 0.85 0.85 0.34± 0.34 0.80
DePPO ICM 0.17± 0.26 0.17± 0.26 0.68± 0.26 0.51± 0.34 0.85 1.04 ± 0.28 0.85 ± 0.01 1.04± 0.28 0.85 ± 0.56
DeDQN Count 0.26± 0.42 0.28± 0.40 0.32± 0.60 0.43± 0.42 0.43± 0.42 0.68± 0.76 0.47± 0.40 1.60 ± 0.30 1.23 ± 0.38
DeDQN ICM 0.32± 0.60 0.11± 0.31 0.25± 0.60 0.22± 0.61 0.34± 0.57 0.50± 0.63 0.66± 0.26 0.64± 0.57 0.70± 0.54

170 Appendix A. Decoupled Reinforcement Learning

0.01 0.1 0.2 1.0 5.0 10.0100.0
Decay rate

0.00

0.25

0.50

0.75

1.00
Ep

iso
de

 re
tu

rn

(a) A2C Hash-Count

1 091 082 081 075 071 061 051 041 03

Decay rate

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(b) A2C RND

1 091 082 081 075 071 061 051 041 03

Decay rate

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(c) A2C RIDE

0.01 0.1 0.2 1.0 5.0 10.0100.0
Decay rate

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(d) PPO Hash-Count

1 091 082 081 075 071 061 051 041 03

Decay rate

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(e) PPO RND

1 091 082 081 075 071 061 051 041 03

Decay rate

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(f) PPO RIDE

Figure A.8: Average evaluation returns with 95% confidence intervals for A2C and
PPO with Hash-Count, RND and RIDE intrinsic rewards in DeepSea 10 with varying
count increments and learning rates.

0.01 0.1 0.2 1.0 5.0 10.0100.0
Decay rate

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(a) A2C Hash-Count

1 091 082 081 075 071 061 051 041 03

Decay rate

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(b) A2C RND

1 091 082 081 075 071 061 051 041 03

Decay rate

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(c) A2C RIDE

0.01 0.1 0.2 1.0 5.0 10.0100.0
Decay rate

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(d) PPO Hash-Count

1 091 082 081 075 071 061 051 041 03

Decay rate

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(e) PPO RND

1 091 082 081 075 071 061 051 041 03

Decay rate

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(f) PPO RIDE

Figure A.9: Average evaluation returns with 95% confidence intervals for A2C and
PPO with Hash-Count, RND and RIDE intrinsic rewards in Hallway Nl = Nr = 10
with varying count increments and learning rates.

A.3. Hyperparameter Sensitivity 171

Table A.15: Maximum evaluation returns with a single standard deviation in DeepSea
10 with count-based intrinsic rewards and varying count increments.

Algorithm \ Count increment 0.01 0.1 0.2 1.0 5.0 10.0 100.0

A2C Count 0.99 0.99 0.79± 0.30 0.99 0.99 0.99 0.99
A2C Hash-Count 0.99 0.99 0.99 0.99 0.99 0.99 0.99

PPO Count 0.59± 0.40 0.99 0.99 0.99 0.99 0.99 0.00
PPO Hash-Count 0.79± 0.30 0.99 0.99 0.99 0.99 0.99 0.99

DeA2C Count 0.99 0.99 0.99 0.99 0.99 0.99 0.99
DePPO Count 0.79± 0.30 0.99 0.99 0.99 0.99 0.99 0.99
DeDQN Count 0.99 0.99 0.99 0.99 0.99 0.99 0.99

Table A.16: Maximum evaluation returns with a single standard deviation in DeepSea
10 with prediction-based intrinsic rewards and varying learning rates.

Algorithm \ Learning rate 1e-9 1e-8 2e-8 1e-7 5e-7 1e-6 1e-5 1e-4 1e-3

A2C ICM 0.00 0.00 0.00 0.00 0.39± 0.40 0.79 ± 0.30 0.99 0.99 0.99
A2C RND 0.19 ± 0.30 0.00 −0.01 0.20 ± 0.30 0.00 0.19± 0.30 0.39± 0.40 0.19± 0.30 0.39± 0.40
A2C RIDE 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

PPO ICM −0.01 0.19 ± 0.30 0.00 0.39 ± 0.40 0.99 0.59 ± 0.40 0.99 0.99 0.99
PPO RND 0.19 ± 0.30 0.19 ± 0.30 0.19 ± 0.30 0.39 ± 0.40 0.59± 0.40 0.59 ± 0.40 0.59± 0.40 0.39± 0.40 0.39± 0.40
PPO RIDE 0.00 0.19 ± 0.30 0.20 ± 0.30 0.00 0.79± 0.30 0.79 ± 0.30 0.79± 0.30 0.39± 0.40 0.20± 0.30

DeA2C ICM 0.00 0.00 0.00 0.00 0.39± 0.40 0.59 ± 0.40 0.99 0.99 0.99
DePPO ICM 0.00 0.00 0.00 0.00 0.19± 0.30 0.39± 0.40 0.99 0.99 0.99
DeDQN ICM 0.00 0.19 ± 0.30 0.00 0.00 0.39± 0.40 0.79 ± 0.30 0.99 0.99 0.99

Table A.17: Maximum evaluation returns with a single standard deviation in Hallway
Nl = Nr = 10 with count-based intrinsic rewards and varying count increments.

Algorithm \ Count increment 0.01 0.1 0.2 1.0 5.0 10.0 100.0

A2C Count 0.80 0.80 0.17± 0.26 0.85 0.68± 0.26 0.68± 0.26 0.68 ± 0.26
A2C Hash-Count 0.34± 0.34 0.85 0.85 0.85 0.85 0.85 0.51 ± 0.34

PPO Count 0.00 0.00 0.16± 0.25 0.00 0.00 0.00 0.00
PPO Hash-Count 0.16± 0.24 0.26± 0.38 0.80 0.17± 0.26 0.00 0.00 0.00

DeA2C Count 0.85 1.00 ± 0.30 0.83± 0.02 0.85 0.85 0.34± 0.34 0.17± 0.26
DePPO Count 1.23 ± 0.38 0.80 0.25± 0.37 0.85 0.68± 0.26 0.51± 0.34 0.00
DeDQN Count 1.02 ± 0.60 0.85 1.23 ± 0.38 0.43± 0.42 0.24± 0.40 0.05± 0.34 0.26± 0.42

Table A.18: Maximum evaluation returns with a single standard deviation in Hallway
Nl = Nr = 10 with prediction-based intrinsic rewards and varying learning rates.

Algorithm \ Learning rate 1e-9 1e-8 2e-8 1e-7 5e-7 1e-6 1e-5 1e-4 1e-3

A2C ICM −0.04± 0.06 −0.04± 0.06 −0.04± 0.06 0.15± 0.28 0.68± 0.26 0.51± 0.34 0.85 0.85 0.34± 0.34
A2C RND 0.00 0.00 0.00 0.00 0.00 0.00 −0.04± 0.06 −0.08± 0.08 0.17± 0.25
A2C RIDE −0.11± 0.01 −0.11± 0.01 −0.11± 0.01 0.84 ± 0.02 0.66± 0.28 0.85 0.85 0.66± 0.28 0.17± 0.26

PPO ICM 0.40± 0.40 0.40± 0.40 0.22± 0.40 0.24± 0.40 0.40± 0.40 0.26± 0.38 0.33± 0.33 0.50± 0.34 0.67± 0.26
PPO RND 0.80 0.80 0.64 ± 0.24 0.44 ± 0.38 0.80 0.23± 0.39 0.12± 0.30 0.24± 0.40 0.44± 0.38
PPO RIDE 0.44± 0.36 0.62± 0.28 0.65 ± 0.24 0.43 ± 0.37 0.44± 0.37 0.10± 0.30 0.26± 0.37 0.46± 0.38 0.51± 0.34

DeA2C ICM 0.00 0.00 0.00 0.49 ± 0.33 0.67± 0.26 0.85 0.85 0.85 0.85
DePPO ICM −0.04± 0.06 −0.04± 0.06 −0.04± 0.06 0.42 ± 0.40 0.48± 0.38 0.68± 0.26 0.85 0.49± 0.33 0.00
DeDQN ICM −0.04± 0.06 0.00 −0.04± 0.06 1.04 ± 0.78 0.34± 0.57 0.31± 0.57 0.30± 0.38 0.13± 0.32 0.17± 0.26

172 Appendix A. Decoupled Reinforcement Learning

A.4 KL-Divergence Constraint Regularisation

In this section, we first provide figures showing evaluation returns of the evalua-
tion policy (top left), training returns of the exploration policy (bottom left), IS
weights (top right) and KL-divergence of exploration and exploitation policy (bot-
tom right) for DeA2C trained with Count intrinsic rewards and KL-divergence
constraints in the DeepSea 10 and HallwayNl = Nr = 20 tasks for 20,000 episodes.
Each figure corresponds to DeA2C being trained with KL-divergence constraint
coefficients αβ and αe for the regulariser terms for the exploration policy πβ and
exploitation policy πe, respectively. We present training with the exploration pol-
icy being trained using only intrinsic rewards (blue) or using the sum of intrinsic
and extrinsic rewards (orange). Figures A.10 to A.12 show evaluation returns
with such divergence constraints in DeepSea 10, and Figures A.13 to A.15 show
evaluation returns in Hallway Nl = Nr = 20. Average returns and 95% confidence
intervals are computed over 1,000 samples across three seeds and we consider reg-
ularisation coefficients αβ, αe ∈ {0.0, 0.0001, 0.001, 0.01, 0.1}.

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.996

0.998

1.000

1.002

1.004

1.006

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
KL

(
e||

)

r = ri r = re + ri

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

1.0

1.5

2.0

2.5

3.0

3.5

4.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) αβ = 0.0, αe = 0.0

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.9

1.0

1.1

1.2

1.3

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
KL

(
e||

)

(b) αβ = 0.0, αe = 1e− 4

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50
D

KL
(

e||
)

(c) αβ = 0.0, αe = 1e− 3

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.950

0.975

1.000

1.025

1.050

1.075

1.100

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

D
KL

(
e||

)

(d) αβ = 0.0, αe = 1e− 2

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.95

1.00

1.05

1.10

1.15

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
KL

(
e||

)

(e) αβ = 0.0, αe = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

1

2

3

4

5

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
KL

(
e||

)

(f) αβ = 1e− 4, αe = 0.0

Figure A.10: DeepSea 10 evaluation with divergence constraint regularisation coeffi-
cients αβ and αe. Shading indicates 95% confidence intervals; Part 1

A.4. KL-Divergence Constraint Regularisation 173

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.996

0.998

1.000

1.002

1.004

1.006

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
KL

(
e||

)

r = ri r = re + ri

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

1

2

3

4

5

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0
Tr

ai
ni

ng
 re

tu
rn

s

0 50000 100000 150000 200000
Timesteps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
KL

(
e||

)
(a) αβ = 1e− 4, αe = 1e− 4

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
KL

(
e||

)

(b) αβ = 1e− 4, αe = 1e− 3

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.9

1.0

1.1

1.2

1.3

1.4

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

D
KL

(
e||

)

(c) αβ = 1e− 4, αe = 1e− 2

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.97

0.98

0.99

1.00

1.01

1.02

1.03

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

D
KL

(
e||

)

(d) αβ = 1e− 4, αe = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.9

1.0

1.1

1.2

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
KL

(
e||

)

(e) αβ = 1e− 3, αe = 0.0

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.8

1.0

1.2

1.4

1.6

1.8

2.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.5

1.0

1.5

2.0

2.5

3.0

D
KL

(
e||

)

(f) αβ = 1e− 3, αe = 1e− 4

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.9

1.0

1.1

1.2

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
KL

(
e||

)

(g) αβ = 1e− 3, αe = 1e− 3

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.9

1.0

1.1

1.2

1.3

1.4

1.5

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

D
KL

(
e||

)

(h) αβ = 1e− 3, αe = 1e− 2

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.97

0.98

0.99

1.00

1.01

1.02

1.03

1.04

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
KL

(
e||

)

(i) αβ = 1e− 3, αe = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

D
KL

(
e||

)

(j) αβ = 1e− 2, αe = 0.0

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.9

1.0

1.1

1.2

1.3

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

D
KL

(
e||

)

(k) αβ = 1e− 2, αe = 1e− 4

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.90

0.95

1.00

1.05

1.10

1.15

1.20

1.25

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.25

0.50

0.75

1.00

1.25

1.50

D
KL

(
e||

)

(l) αβ = 1e− 2, αe = 1e− 3

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.950

0.975

1.000

1.025

1.050

1.075

1.100

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

D
KL

(
e||

)

(m) αβ = 1e−2, αe = 1e−2

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.95

1.00

1.05

1.10

1.15

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

D
KL

(
e||

)

(n) αβ = 1e− 2, αe = 0.1

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.98

0.99

1.00

1.01

1.02

1.03

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

D
KL

(
e||

)

(o) αβ = 0.1, αe = 0.0

Figure A.11: DeepSea 10 evaluation with divergence constraint regularisation coeffi-
cients αβ and αe. Shading indicates 95% confidence intervals; Part 2

174 Appendix A. Decoupled Reinforcement Learning

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.996

0.998

1.000

1.002

1.004

1.006

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
KL

(
e||

)

r = ri r = re + ri

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.99

1.00

1.01

1.02

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20
D

KL
(

e||
)

(a) αβ = 0.1, αe = 1e− 4

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.98

0.99

1.00

1.01

1.02

1.03

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

D
KL

(
e||

)

(b) αβ = 0.1, αe = 1e− 3

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.990

0.995

1.000

1.005

1.010

1.015

1.020

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
KL

(
e||

)

(c) αβ = 0.1, αe = 1e− 2

0.0

0.2

0.4

0.6

0.8

1.0
Ev

al
ua

tio
n

re
tu

rn
s

0.97

0.98

0.99

1.00

1.01

1.02

1.03

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
KL

(
e||

)

(d) αβ = 0.1, αe = 0.1

Figure A.12: DeepSea 10 evaluation with divergence constraint regularisation coeffi-
cients αβ and αe. Shading indicates 95% confidence intervals; Part 3

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.996

0.998

1.000

1.002

1.004

1.006

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
KL

(
e||

)

r = ri r = re + ri

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

(a) αβ = 0.0, αe = 0.0

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
KL

(
e||

)

(b) αβ = 0.0, αe = 1e− 4

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
KL

(
e||

)

(c) αβ = 0.0, αe = 1e− 3

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.5

0.6

0.7

0.8

0.9

1.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

D
KL

(
e||

)

(d) αβ = 0.0, αe = 1e− 2

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.90

0.92

0.94

0.96

0.98

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
KL

(
e||

)

(e) αβ = 0.0, αe = 0.1

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.5

0.6

0.7

0.8

0.9

1.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

D
KL

(
e||

)

(f) αβ = 1e− 4, αe = 0.0

Figure A.13: Hallway Nl = Nr = 20 evaluation with divergence constraint regularisa-
tion coefficients αβ and αe. Shading indicates 95% confidence intervals; Part 1

A.4. KL-Divergence Constraint Regularisation 175

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.996

0.998

1.000

1.002

1.004

1.006

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
KL

(
e||

)

r = ri r = re + ri

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
KL

(
e||

)

(a) αβ = 1e−4, αe = 0.0001

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

1.2

D
KL

(
e||

)

(b) αβ = 1e− 4, αe = 1e− 3

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.5

0.6

0.7

0.8

0.9

1.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.1

0.2

0.3

0.4

0.5

D
KL

(
e||

)

(c) αβ = 1e− 4, αe = 1e− 2

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.90

0.92

0.94

0.96

0.98

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
KL

(
e||

)

(d) αβ = 1e− 4, αe = 0.1

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

D
KL

(
e||

)

(e) αβ = 1e− 3, αe = 0.0

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

D
KL

(
e||

)

(f) αβ = 1e−3, αe = 0.0001

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.4

0.5

0.6

0.7

0.8

0.9

1.0

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

1.0

D
KL

(
e||

)

(g) αβ = 1e− 3, αe = 1e− 3

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
IS

 w
ei

gh
ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

D
KL

(
e||

)

(h) αβ = 1e− 3, αe = 1e− 2

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.90

0.92

0.94

0.96

0.98

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
KL

(
e||

)

(i) αβ = 1e− 3, αe = 0.1

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.0

0.2

0.4

0.6

0.8

D
KL

(
e||

)

(j) αβ = 1e− 2, αe = 0.0

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
KL

(
e||

)

(k) αβ = 1e−2, αe = 0.0001

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.70

0.75

0.80

0.85

0.90

0.95

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

D
KL

(
e||

)

(l) αβ = 1e− 2, αe = 1e− 3

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.75

0.80

0.85

0.90

0.95

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

D
KL

(
e||

)

(m) αβ = 1e−2, αe = 1e−2

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.88

0.90

0.92

0.94

0.96

0.98

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
KL

(
e||

)

(n) αβ = 1e− 2, αe = 0.1

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.88

0.90

0.92

0.94

0.96

0.98

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
KL

(
e||

)

(o) αβ = 0.1, αe = 0.0

Figure A.14: Hallway Nl = Nr = 20 evaluation with divergence constraint regularisa-
tion coefficients αβ and αe. Shading indicates 95% confidence intervals; Part 2

176 Appendix A. Decoupled Reinforcement Learning

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

0.996

0.998

1.000

1.002

1.004

1.006

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
KL

(
e||

)

r = ri r = re + ri

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.88

0.90

0.92

0.94

0.96

0.98

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.00

0.01

0.02

0.03

0.04

D
KL

(
e||

)

(a) αβ = 0.1, αe = 0.0001

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.90

0.92

0.94

0.96

0.98

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

D
KL

(
e||

)

(b) αβ = 0.1, αe = 1e− 3

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.88

0.90

0.92

0.94

0.96

0.98

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

D
KL

(
e||

)

(c) αβ = 0.1, αe = 1e− 2

0.0

0.5

1.0

1.5

2.0

2.5

Ev
al

ua
tio

n
re

tu
rn

s

0.92

0.94

0.96

0.98

1.00

IS
 w

ei
gh

ts

0 5000 10000 15000 20000
Episode

0.0

0.5

1.0

1.5

2.0

2.5

Tr
ai

ni
ng

 re
tu

rn
s

0 50000 100000 150000 200000
Timesteps

0.000

0.005

0.010

0.015

0.020

D
KL

(
e||

)

(d) αβ = 0.1, αe = 0.1

Figure A.15: Hallway Nl = Nr = 20 evaluation with divergence constraint regularisa-
tion coefficients αβ and αe. Shading indicates 95% confidence intervals; Part 3

A.4. KL-Divergence Constraint Regularisation 177

Following these results, we identify the best performing regularisation coeffi-
cients for DeA2C trained with Count intrinsic rewards according to evaluation
returns in both DeepSea and Hallway tasks and evaluate their sensitivity to vary-
ing values of λ and rates of decay in DeepSea 10 and Hallway Nl = Nr = 20
tasks following the evaluation procedure outlined in Section 3.4.1. We consider
both cases in which the exploration policy πβ is trained using extrinsic and intrin-
sic rewards or is trained using only intrinsic rewards. All results show learning
curves with average evaluation curves and 95% bootstrapped confidence intervals
computed over five random seeds. Figure A.16 and Figure A.17 show the sen-
sitivity results to varying λ values in DeepSea 10 and Hallway Nl = Nr = 10,
respectively. Similarly, Figure A.18 and Figure A.19 show the sensitivity results
to varying decay rates in DeepSea 10 and Hallway Nl = Nr = 10, respectively.

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(a) αβ = αe = 0, r = re +
λri

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

(b) αβ = αe = 0.1, r = re +
λri

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

(c) αβ = αe = 0.1, r = λri

Figure A.16: Average evaluation returns with 95% confidence intervals for DeA2C
with Count in DeepSea 10 with varying λ (a) without divergence constraints, (b)
with divergence constraints and the exploration policy trained on both extrinsic and
intrinsic rewards, and (c) with divergence constraints and the exploration policy only
trained on intrinsic rewards.

178 Appendix A. Decoupled Reinforcement Learning

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(a) αβ = αe = 0, r = re +
λri

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(b) αβ = 1e−2, αe = 0.0001,
r = re + λri

0.010.10.250.5 1.0 2.0 4.010.0100.0
Intrinsic coefficient

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(c) αβ = 1e−2, αe = 0.0001,
r = λri

Figure A.17: Average evaluation returns with 95% confidence intervals for DeA2C
with Count in Hallway Nl = Nr = 10 with varying λ (a) without divergence con-
straints, (b) with divergence constraints and the exploration policy trained on both
extrinsic and intrinsic rewards, and (c) with divergence constraints and the exploration
policy only trained on intrinsic rewards.

0.01 0.1 0.2 1.0 5.0 10.0100.0
Decay rate

0.00

0.25

0.50

0.75

1.00

Ep
iso

de
 re

tu
rn

(a) αβ = αe = 0, r = re +
λri

0.01 0.1 0.2 1.0 5.0 10.0100.0
Decay rate

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

(b) αβ = αe = 0.1, r = re +
λri

0.01 0.1 0.2 1.0 5.0 10.0100.0
Decay rate

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

de
 re

tu
rn

(c) αβ = αe = 0.1, r = λri

Figure A.18: Average evaluation returns with 95% confidence intervals for DeA2C
with Count in DeepSea 10 with varying count increments (a) without divergence
constraints, (b) with divergence constraints and the exploration policy trained on
both extrinsic and intrinsic rewards, and (c) with divergence constraints and the
exploration policy only trained on intrinsic rewards.

A.4. KL-Divergence Constraint Regularisation 179

0.01 0.1 0.2 1.0 5.0 10.0100.0
Decay rate

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(a) αβ = αe = 0, r = re +
λri

0.01 0.1 0.2 1.0 5.0 10.0100.0
Decay rate

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(b) αβ = 1e−2, αe = 0.0001,
r = re + λri

0.01 0.1 0.2 1.0 5.0 10.0100.0
Decay rate

0.0

0.5

1.0

1.5

Ep
iso

de
 re

tu
rn

(c) αβ = 1e−2, αe = 0.0001,
r = λri

Figure A.19: Average evaluation returns with 95% confidence intervals for DeA2C
with Count in Hallway Nl = Nr = 10 with varying count increments (a) without
divergence constraints, (b) with divergence constraints and the exploration policy
trained on both extrinsic and intrinsic rewards, and (c) with divergence constraints
and the exploration policy only trained on intrinsic rewards.

Appendix B

Multi-Agent Deep Reinforcement
Learning Benchmark

B.1 The EPyMARL Codebase

As part of this work we extended the well-known PyMARL codebase (Samvelyan
et al., 2019) to include more algorithms, support more environments as well as
allow for more flexible tuning of the implementation details.

All code for EPyMARL is publicly available open-source on GitHub under
the following link: https://github.com/uoe-agents/epymarl.

Details on how to install and use EPyMARL are provided in the provided doc-
umentation under the GitHub repository, and blog posts for further information
can be found under the following link: https://agents.inf.ed.ac.uk/blog/

epymarl/ and https://agents.inf.ed.ac.uk/blog/epymarl-v2/.
All source code that has been taken from the PyMARL repository was li-

censed under the Apache License v2.0. Any new code is also licensed under the
Apache License v2.0. The NOTICE file in the GitHub repository contains infor-
mation about the files that have been added or modified compared to the original
PyMARL codebase.

B.2 Computational Cost

Approximately 138,916 CPU hours were spent for executing the experiments pre-
sented in the paper without considering the CPU hours required for the hyperpa-
rameter search. Figure B.1 presents the cumulative CPU hours required to train

181

https://github.com/uoe-agents/epymarl
https://agents.inf.ed.ac.uk/blog/epymarl/
https://agents.inf.ed.ac.uk/blog/epymarl/
https://agents.inf.ed.ac.uk/blog/epymarl-v2/

182 Appendix B. Multi-Agent Deep Reinforcement Learning Benchmark

each algorithm in each environments (summed over the different tasks and seeds)
with and without parameter sharing using the best identified hyperparameter
configurations reported in Appendix B.6. We observe that the computational
cost of running experiments in SMAC is significantly higher compared to any
other environment. Finally, the CPU hours required for training the algorithms
without sharing is slightly higher compared to training with parameter sharing.

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

5

10

15

20

25

CP
U

Ho
ur

s

Matrix

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

50

100

150

200

250

CP
U

Ho
ur

s

MPE

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

2000

4000

6000

8000

10000

CP
U

Ho
ur

s

SMAC

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

50

100

150

200

250

300

350

CP
U

Ho
ur

s

LBF

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

100

200

300

400

500

600

700

CP
U

Ho
ur

s

RWARE

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

5

10

15

20

25

30

CP
U

Ho
ur

s

Matrix

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

50

100

150

200

250

300

CP
U

Ho
ur

s

MPE

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

2000

4000

6000

8000

10000

CP
U

Ho
ur

s

SMAC

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

100

200

300

400

500

600

700

CP
U

Ho
ur

s

LBF

IQL IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX
0

100

200

300

400

500

600

CP
U

Ho
ur

s

RWARE

Figure B.1: CPU hours required to execute the experiments for each algorithm and
environment with (top row) and without (bottom row) parameter sharing.

B.3 SMAC Win-Rates

Table B.1: Maximum win-rate and 95% confidence interval over five seeds for all
nine algorithms with parameter sharing in all SMAC tasks.

Tasks \Algs. IDQN IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX

2s_vs_1sc 0.61± 0.04 1.00 1.00 0.21± 0.20 0.34± 0.41 1.00 1.00 0.74± 0.04 0.85± 0.03
3s5z 0.39± 0.04 0.72± 0.23 0.17± 0.13 0.15± 0.30 0.81± 0.19 0.99± 0.01 0.96± 0.01 0.92± 0.05 0.94± 0.01
corridor 0.44± 0.20 0.80± 0.08 0.82± 0.25 0.00 0.00 0.00 0.68± 0.34 0.44± 0.37 0.53± 0.29
MMM2 0.27± 0.08 0.14± 0.17 0.15± 0.15 0.00 0.00 0.01± 0.01 0.73± 0.07 0.89± 0.04 0.89± 0.04
3s_vs_5z 0.67± 0.17 0.00 0.72± 0.43 0.00 0.00 0.00 0.41± 0.43 0.62± 0.31 0.43± 0.37

Table B.2: Maximum win-rate and 95% confidence interval over five seeds for all
nine algorithms without parameter sharing in all SMAC tasks.

Tasks \Algs. IDQN IA2C IPPO MADDPG COMA MAA2C MAPPO VDN QMIX

2s_vs_1sc 0.49± 0.12 1.00 0.99± 0.01 0.06± 0.10 0.79± 0.40 0.96± 0.04 1.00 0.64± 0.11 0.84± 0.02
3s5z 0.48± 0.23 0.27± 0.25 0.27± 0.25 0.13± 0.09 0.91± 0.08 0.87± 0.07 0.94± 0.03 0.81± 0.06 0.70± 0.11
corridor 0.05± 0.06 0.31± 0.39 0.17± 0.30 0.00 0.01± 0.02 0.06± 0.12 0.01± 0.01 0.08± 0.11 0.40± 0.32
MMM2 0.04± 0.08 0.06± 0.13 0.00 0.00 0.00 0.00 0.00 0.58± 0.04 0.23± 0.16
3s_vs_5z 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.11± 0.22 0.23± 0.24

B.4. Learning Curves in All Tasks 183

B.4 Learning Curves in All Tasks0

5

10

15

20

IDQN
IA2C

IPPO
MADDPG

COMA
MAA2C

MAPPO
VDN

QMIX

0 50000 100000 150000 200000 250000
Environment timesteps

0

50

100

150

200

250

300
Ep

iso
di

c
Re

tu
rn

Climbing

0 50000 100000 150000 200000 250000
Environment timesteps

0

50

100

150

200

250

300

Ep
iso

di
c

Re
tu

rn

Penalty k=0

0 50000 100000 150000 200000 250000
Environment timesteps

0

10

20

30

40

50

60

70

Ep
iso

di
c

Re
tu

rn

Penalty k=-25

0 50000 100000 150000 200000 250000
Environment timesteps

0

10

20

30

40

50

60

70

Ep
iso

di
c

Re
tu

rn

Penalty k=-50

0 50000 100000 150000 200000 250000
Environment timesteps

0

10

20

30

40

50

60

70

Ep
iso

di
c

Re
tu

rn

Penalty k=-75

0 50000 100000 150000 200000 250000
Environment timesteps

0

10

20

30

40

50

60

70

Ep
iso

di
c

Re
tu

rn

Penalty k=-100

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

−40

−35

−30

−25

−20

−15

−10

Ep
iso

di
c

Re
tu

rn

Speaker Listener

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

−300

−275

−250

−225

−200

−175

−150

−125

Ep
iso

di
c

Re
tu

rn

Spread

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

0

2

4

6

8

10

12

Ep
iso

di
c

Re
tu

rn

Adversary

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

0

5

10

15

20

25

30

35

Ep
iso

di
c

Re
tu

rn

Predator Prey

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment timesteps 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ep
iso

di
c

Re
tu

rn

2s_vs_1sc

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment timesteps 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ep
iso

di
c

Re
tu

rn

3s5z

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment timesteps 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ep
iso

di
c

Re
tu

rn

MMM2

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment timesteps 1e6

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Ep
iso

di
c

Re
tu

rn

corridor

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment timesteps 1e6

0

5

10

15

20

Ep
iso

di
c

Re
tu

rn

3s_vs_5z

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ep
iso

di
c

Re
tu

rn

8x8-2p-2f-coop

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

di
c

Re
tu

rn

8x8-2p-2f-coop, sight=2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

di
c

Re
tu

rn

10x10-3p-3f

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

di
c

Re
tu

rn

10x10-3p-3f, sight=2

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

di
c

Re
tu

rn

15x15-3p-5f

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

di
c

Re
tu

rn

15x15-4p-3f

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Environment timesteps 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Ep
iso

di
c

Re
tu

rn

15x15-4p-5f

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment timesteps 1e6

0

5

10

15

20

Ep
iso

di
c

Re
tu

rn

Tiny 2p

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment timesteps 1e6

0

10

20

30

40

50

Ep
iso

di
c

Re
tu

rn

Tiny 4p

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
Environment timesteps 1e6

0

5

10

15

20

25

30

Ep
iso

di
c

Re
tu

rn

Small 4p

Figure B.2: Episodic returns of all algorithms with parameter sharing in all environ-
ments showing the mean and the 95% confidence interval over five different seeds.

B.5 Hyperparameter Optimisation

The parameters of each algorithms are optimised for each environment in one of
its tasks and are kept constant for the rest of the tasks within the same envi-
ronment. Each combination of hyperparameters is evaluated for three different
seeds. The combination of hyperparameters that achieved the maximum evalua-
tion, averaged over the three seeds, is used for producing the results presented in
this work. Table B.3 presents the range of hyperparameters we evaluated in each
environment, on the respective applicable algorithms. In general, all algorithms
were evaluated in approximately the same number of hyperparameter combina-
tion for each environment to ensure consistency. To reduce the computational
cost, the hyperparameter search was limited in SMAC compared to the other
environments. However, several of the evaluated algorithms have been previously
evaluated in SMAC and their best hyperparameters are publicly available in their

184 Appendix B. Multi-Agent Deep Reinforcement Learning Benchmark

Table B.3: Range of hyperparameters that was evaluated in each environment. N/A
means that this hyperparameter was not optimised, and that we used one that was
either proposed in the original paper or was found to be the best in the rest of the
environments. If only one value is presented it means that this hyperparameter was
used for all algorithms in this task.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64/128 64/128 64/128 64/128 64/128
learning rate 0.0001/0.0003/0.0005 0.0001/0.0003/0.0005 0.0005 0.0001/0.0003/0.0005 0001/0.0003/0.0005
reward standardisation True/False True/False True/False True/False True/False
network type FC FC/GRU FC/GRU FC/GRU FC/GRU
evaluation epsilon 0.0/0.05 0.0/0.05 0.0/0.05 0.0/0.05 0.0/0.05
epsilon anneal 50,000/200,000 50,000/200,000 50,000 50,000/200,000 50,000/200,000
target update 200(hard)/0.01(soft) 200(hard)/0.01(soft) N/A 200(hard)/0.01(soft) 200(hard)/0.01(soft)
entropy coefficient 0.01/0.001 0.01/0.001 N/A 0.01/0.001 0.01/0.001
n-step 5/10 5/10 N/A 5/10 5/10

respective papers.

B.6 Selected Hyperparameters

In this section we present the hyperparameters used in each task. In the off-policy
algorithms we use an experience replay to break the correlation between consecu-
tive samples (Lin, 1992b; Mnih et al., 2015). In the on-policy algorithms we use
parallel synchronous workers to break the correlation between consecutive sam-
ples (Mnih et al., 2015). The size of the experience replay is either 5K episodes
or 1M samples, depending on which is smaller in terms of used memory. Explo-
ration in Q-based algorithms is done with epsilon-greedy, starting with ϵ = 1 and
linearly reducing it to 0.05. Additionally, in Q-based algorithms we select action
with epsilon-greedy (with a small epsilon value) to ensure that the agents are not
stuck. The evaluation epsilon is the hyperparameter that is optimised during the
hyperparameter optimisation, with possible values between 0 and 0.05. In the
stochastic policy algorithms, we perform exploration by sampling their categori-
cal policy. During execution, in the stochastic policy algorithms, we sample their
policy instead of computing the action that maximises the policy. The computa-
tion of the temporal difference targets is done using the Double Q-learning (van
Hasselt, 2010) update rule. In IPPO and MAPPO the number of update epochs
per training batch is 4 and the clipping value of the surrogate objective is 0.2.

B.6. Selected Hyperparameters 185

Table B.4: Hyperparameters for IDQN with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 128 128 64
learning rate 0.0003 0.0005 0.0005 0.0003 0.0005
reward standardisation True True False True True
network type FC FC GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.05 0.05
epsilon anneal 50,000 200,000 50,000 200,000 50,000
target update 200 (hard) 0.01 (soft) 200 (hard) 200 (hard) 0.01 (soft)

Table B.5: Hyperparameters for IDQN without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 128 64 64 64
learning rate 0.0001 0.0005 0.0005 0.0003 0.0005
reward standardisation True True True True True
network type FC FC GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.05 0.05
epsilon anneal 50,000 200,000 50,000 50,000 50,000
target update 0.01 (soft) 0.01 (soft) 200 (hard) 200 (hard) 0.01 (soft)

Table B.6: Hyperparameters for IA2C with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 64 128 128 64
learning rate 0.0005 0.0005 0.0005 0.0005 0.0005
reward standardisation True True True True True
network type FC GRU FC GRU FC
entropy coefficient 0.01 0.01 0.01 0.001 0.01
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 5 5 5 5 5

186 Appendix B. Multi-Agent Deep Reinforcement Learning Benchmark

Table B.7: Hyperparameters for IA2C without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 64 64 64
learning rate 0.0001 0.0005 0.0005 0.0005 0.0005
reward standardisation True True True True True
network type FC FC FC GRU FC
entropy coefficient 0.01 0.01 0.01 0.01 0.01
target update 200 (hard) 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 5 10 5 5 5

Table B.8: Hyperparameters for IPPO with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 64 128 128 128
learning rate 0.0005 0.0003 0.0005 0.0003 0.0005
reward standardisation True True False False False
network type FC GRU GRU FC GRU
entropy coefficient 0.001 0.01 0.001 0.001 0.001
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft)
n-step 5 5 10 5 10

Table B.9: Hyperparameters for IPPO without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 128 64 128 128
learning rate 0.0005 0.0001 0.0005 0.0001 0.0005
reward standardisation True True True False False
network type FC FC FC GRU FC
entropy coefficient 0.001 0.01 0.001 0.001 0.001
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft)
n-step 5 10 10 5 10

B.6. Selected Hyperparameters 187

Table B.10: Hyperparameters for MADDPG with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 128 64 64
learning rate 0.0003 0.0005 0.0005 0.0003 0.0005
reward standardisation True True False True False
network type FC GRU GRU FC FC
actor regularisation 0.001 0.001 0.01 0.001 0.001
target update 200 (hard) 200 (hard) 0.01 (soft) 200 (hard) 0.01 (soft)

Table B.11: Hyperparameters for MADDPG without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 128 64 64
learning rate 0.0005 0.0005 0.0005 0.0003 0.0005
reward standardisation True True True True False
network type FC GRU FC FC FC
actor regularisation 0.001 0.01 0.001 0.001 0.001
target update 200 (hard) 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft)

Table B.12: Hyperparameters for COMA with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 64 128 128 64
learning rate 0.0005 0.0003 0.0005 0.0001 0.0005
reward standardisation True True True True True
network type FC GRU FC GRU FC
entropy coefficient 0.01 0.001 0.01 0.001 0.01
target update 0.01 (soft) 200 (hard) 0.01 (soft) 200 (hard) 0.01 (soft)
n-step 5 10 5 10 5

188 Appendix B. Multi-Agent Deep Reinforcement Learning Benchmark

Table B.13: Hyperparameters for COMA without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 128 128 64
learning rate 0.0003 0.0005 0.0005 0.0001 0.0005
reward standardisation True True True True False
network type FC GRU GRU GRU FC
entropy coefficient 0.01 0.01 0.01 0.001 0.01
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 10 10 5 5 5

Table B.14: Hyperparameters for MAA2C with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 128 128 64
learning rate 0.003 0.0005 0.0005 0.0005 0.0005
reward standardisation True True True True True
network type FC GRU FC GRU FC
entropy coefficient 0.001 0.01 0.01 0.01 0.01
target update 0.01 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 10 5 5 10 5

Table B.15: Hyperparameters for MAA2C without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 128 128 128 64
learning rate 0.0005 0.0003 0.0005 0.0005 0.0005
reward standardisation True True True True True
network type FC GRU FC GRU FC
entropy coefficient 0.001 0.01 0.01 0.01 0.01
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 10 5 5 5 5

B.6. Selected Hyperparameters 189

Table B.16: Hyperparameters for MAPPO with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 64 64 128 128
learning rate 0.0005 0.0005 0.0005 0.0003 0.0005
reward standardisation True True False False False
network type FC FC GRU FC FC
entropy coefficient 0.001 0.01 0.001 0.001 0.001
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft) 0.01 (soft)
n-step 5 5 10 5 10

Table B.17: Hyperparameters for MAPPO without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 128 64 128 128
learning rate 0.0005 0.0001 0.0005 0.0001 0.0005
reward standardisation True True True False False
network type FC FC GRU FC FC
entropy coefficient 0.001 0.01 0.001 0.001 0.001
target update 0.01 (soft) 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft)
n-step 5 5 10 10 10

Table B.18: Hyperparameters for VDN with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 128 128 128 64
learning rate 0.0001 0.0005 0.0005 0.0003 0.0005
reward standardisation True True True True True
network type FC FC GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.0 0.05
epsilon anneal 200,000 50,000 50,000 200,000 50,000
target update 0.01 (soft) 200 (hard) 200 (hard) 0.01 (soft) 0.01 (soft)

190 Appendix B. Multi-Agent Deep Reinforcement Learning Benchmark

Table B.19: Hyperparameters for VDN without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 64 64 64
learning rate 0.0005 0.0005 0.0005 0.0001 0.0005
reward standardisation True True True True True
network type FC FC GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.05 0.05
epsilon anneal 50,000 50,000 50,000 50,000 50,000
target update 0.01 (soft) 200 (hard) 200 (hard) 200 (hard) 0.01 (soft)

Table B.20: Hyperparameters for QMIX with parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 64 64 128 64 64
learning rate 0.0003 0.0005 0.005 0.0003 0.0005
reward standardisation True True True True True
network type FC GRU GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.05 0.05
epsilon anneal 200,000 200,000 50,000 200,000 50,000
target update 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft) 0.01 (soft)

Table B.21: Hyperparameters for QMIX without parameter sharing.

Matrix Games MPE SMAC LBF RWARE

hidden dimension 128 128 64 64 64
learning rate 0.0005 0.0003 0.0005 0.0001 0.0003
reward standardisation True True True True True
network type FC GRU GRU GRU FC
evaluation epsilon 0.0 0.0 0.05 0.05 0.05
epsilon anneal 50,000 200,000 50,000 50,000 50,000
target update 0.01 (soft) 0.01 (soft) 200 (hard) 0.01 (soft) 0.01 (soft)

Appendix C

Ensemble Value Functions for
Multi-Agent Exploration

C.1 Hyperparameter Optimisation

For IDQN, VDN, QMIX and extensions with EMAX, we conduct a gridsearch to
identify best hyperparameters in one selected task within each environment by
evaluating each algorithm configuration for three runs and selecting the hyperpa-
rameter configuration which led to highest average evaluation returns throughout
training. We largely based our configurations on the reported hyperparameters
from Papoudakis et al. (2021) with minimal hyperparameter tuning. Our im-
plementation of IDQN, VDN, QMIX, and EMAX are based on the EPyMARL
codebase1. For the baseline of MAVEN, CDS, and EMC, we migrated the pro-
vided codebase from the authors2 into EPyMARL to support all environments.
For MAVEN, CDS, and EMC, we use the hyperparameters identified for QMIX
for each environment with the algorithm-specific hyperparameters provided by
the authors. For IPPO and MAPPO, we use the best identified hyperparameters
reported in Papoudakis et al. (2021).

1Available at https://github.com/uoe-agents/epymarl.
2Available at https://github.com/AnujMahajanOxf/MAVEN, https://github.com/

lich14/CDS and https://github.com/kikojay/EMC.

191

https://github.com/uoe-agents/epymarl
https://github.com/AnujMahajanOxf/MAVEN
https://github.com/lich14/CDS
https://github.com/lich14/CDS
https://github.com/kikojay/EMC

192 Appendix C. Ensemble Value Functions for Multi-Agent Exploration

Table C.1: Hyperparameters for IDQN, VDN, QMIX and extensions with EMAX in
LBF. The gridsearch was conducted in Foraging-10x10-4p-3f-coop for 4M time steps,
and the bold entries corresponding to the best identified configuration.

Algorithm Hyperparameter Value

Shared

γ 0.99
Activation function ReLU
Parameter sharing True
Optimiser Adam
Maximum gradient norm 5
Minimum ϵ 0.05
Evaluation ϵ 0.05
Learning rate e−4

Target update frequency 200
Replay buffer capacity (episodes) 5,000
Batch size (episodes) 32

QMIX
Mixing embedding size 32
Hypernetwork embedding size 64

IDQN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

VDN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

QMIX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

IDQN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

VDN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

QMIX-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

C.1. Hyperparameter Optimisation 193

Table C.2: Hyperparameters for IDQN, VDN, QMIX and extensions with EMAX in
BPUSH. The gridsearch was conducted in BPUSH 12× 12 2ag for 7.5M time steps,
and the bold entries corresponding to the best identified configuration.

Algorithm Hyperparameter Value

Shared

γ 0.99
Activation function ReLU
Parameter sharing True
Optimiser Adam
Maximum gradient norm 5
Minimum ϵ 0.05
Evaluation ϵ 0.05
Learning rate e−4

Target update frequency 200
Replay buffer capacity (episodes) 5,000
Batch size (episodes) 32

QMIX
Mixing embedding size 32
Hypernetwork embedding size 64

IDQN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

VDN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

QMIX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

IDQN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

VDN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

QMIX-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

194 Appendix C. Ensemble Value Functions for Multi-Agent Exploration

Table C.3: Hyperparameters for IDQN, VDN, QMIX and extensions with EMAX in
RWARE. The gridsearch was conducted in RWARE 11 × 10 4ag for 5M time steps,
and the bold entries corresponding to the best identified configuration.

Algorithm Hyperparameter Value

Shared

γ 0.99
Activation function ReLU
Parameter sharing True
Optimiser Adam
Maximum gradient norm 5
Minimum ϵ 0.05
Evaluation ϵ 0.05
Learning rate e−4

Target update frequency 200
Replay buffer capacity (episodes) 5,000
Batch size (episodes) 32

QMIX
Mixing embedding size 32
Hypernetwork embedding size 64

IDQN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

VDN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

QMIX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

IDQN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

VDN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

QMIX-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

C.1. Hyperparameter Optimisation 195

Table C.4: Hyperparameters for IDQN, VDN, QMIX and extensions with EMAX in
MPE. The gridsearch was conducted in Spread for 1M time steps, and the bold entries
corresponding to the best identified configuration.

Algorithm Hyperparameter Value

Shared

γ 0.99
Activation function ReLU
Parameter sharing True
Optimiser Adam
Maximum gradient norm 5
Minimum ϵ 0.05
Evaluation ϵ 0.05
Learning rate e−4

Target update frequency 200
Replay buffer capacity (episodes) 5,000
Batch size (episodes) 32

QMIX
Mixing embedding size 32
Hypernetwork embedding size 64

IDQN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

VDN

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

QMIX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
ϵ decay steps 50,000, 200,000

IDQN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

VDN-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

QMIX-EMAX

Network architecture FC, FC + GRU
Network size 64, 128
Reward standardisation False, True
UCB uncertainty coefficient β 0.1, 0.3, 1

196 Appendix C. Ensemble Value Functions for Multi-Agent Exploration

C.2 Individual Task Evaluation Returns in Mixed-
Objective Tasks

IDQN + EMAX (ours)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

(a) LBF 10x10-3p-5f

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

(b) LBF 15x15-3p-5f

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

(c) LBF 10x10-4p-3f-coop

0.0 0.2 0.4 0.6 0.8 1.0
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0

Ev
al

ua
tio

n
re

tu
rn

s

(d) LBF 5x5-2p-1f-coop-pen

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Timesteps 1e7

0.0

0.2

0.4

0.6

0.8

1.0
Ev

al
ua

tio
n

re
tu

rn
s

(e) LBF 8x8-2p-1f-coop-pen

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0

5

10

15

20

Ev
al

ua
tio

n
re

tu
rn

s

(f) RWARE 11x10 2ag

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0

2

4

6

8

10

12

14

Ev
al

ua
tio

n
re

tu
rn

s

(g) RWARE 11x10 2ag hard

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0

5

10

15

20

25

30

35

40

Ev
al

ua
tio

n
re

tu
rn

s

(h) RWARE 11x10 4ag

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0

5

10

15

20

25

30

Ev
al

ua
tio

n
re

tu
rn

s

(i) RWARE 11x10 4ag hard

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Ev
al

ua
tio

n
re

tu
rn

s

(j) RWARE 20x10 4ag

0.0 0.5 1.0 1.5 2.0
Timesteps 1e7

0

2

4

6

8

Ev
al

ua
tio

n
re

tu
rn

s

(k) RWARE 20x16 4ag

Figure C.1: Average evaluation returns and 95% confidence intervals for IDQN with
and without EMAX in mixed-objective LBF and RWARE tasks.

C.3. Individual Task Evaluation Returns in Cooperative Tasks 197

C.3 Individual Task Evaluation Returns in Cooper-
ative Tasks

C.3.1 Level-Based Foraging
Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(a) LBF 10x10-4p-1f-coop

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(b) LBF 10x10-4p-2f-coop

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(c) LBF 10x10-4p-3f-coop

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(d) LBF 10x10-4p-4f-coop

0 2 4
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 2 4
1e6

VDN

0 2 4
1e6

QMIX

Timesteps

(e) LBF 10x10-3p-5f

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(f) LBF 15x15-8p-1f-coop

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(g) LBF 5x5-2p-1f-coop-pen

0.0 2.5 5.0
1e6

0.00

0.25

0.50

0.75

1.00

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 2.5 5.0
1e6

VDN

0.0 2.5 5.0
1e6

QMIX

Timesteps

(h) LBF 5x5-2p-2f-coop-pen

Figure C.2: Average evaluation returns and 95% confidence intervals for all algorithms
in LBF tasks.

198 Appendix C. Ensemble Value Functions for Multi-Agent Exploration

C.3.2 Boulder-Push
Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0.0 0.5 1.0
1e7

0

1

2

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(a) BPUSH 8x8 2ag

0.0 0.5 1.0
1e7

0

1

2

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(b) BPUSH 12x12 2ag

0.0 0.5 1.0
1e7

0.0

0.5

1.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(c) BPUSH 20x20 2ag

0.0 0.5 1.0
1e7

0

1

2

3

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(d) BPUSH 5x5 4ag

Figure C.3: Average evaluation returns and 95% confidence intervals for all algorithms
in BPUSH tasks.

C.3. Individual Task Evaluation Returns in Cooperative Tasks 199

C.3.3 Multi-Robot Warehouse
Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0.0 0.5 1.0
1e7

0

5

10

15
Ev

al
ua

tio
n

re
tu

rn
s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(a) RWARE 11x10 2ag

0.0 0.5 1.0
1e7

0

10

20

30

40

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(b) RWARE 11x10 4ag

0.0 0.5 1.0
1e7

0.0

0.5

1.0

1.5

2.0

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(c) RWARE 20x10 2ag

0.0 0.5 1.0
1e7

0

5

10

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(d) RWARE 20x10 4ag

0.0 0.5 1.0
1e7

0

1

2

3

4

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(e) RWARE 20x16 4ag

0.0 0.5 1.0
1e7

0

1

2

3

4

Ev
al

ua
tio

n
re

tu
rn

s
IDQN

0.0 0.5 1.0
1e7

VDN

0.0 0.5 1.0
1e7

QMIX

Timesteps

(f) RWARE 29x16 4ag

Figure C.4: Average evaluation returns and 95% confidence intervals for all algorithms
in RWARE tasks.

200 Appendix C. Ensemble Value Functions for Multi-Agent Exploration

C.3.4 Multi-Agent Particle Environment
Standard + EMAX (ours) MAVEN CDS EMC IPPO MAPPO

0 1 2
1e6

−300

−250

−200

−150

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 1 2
1e6

VDN

0 1 2
1e6

QMIX

Timesteps

(a) MPE spread

0 1 2
1e6

0

10

20

30

40

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 1 2
1e6

VDN

0 1 2
1e6

QMIX

Timesteps

(b) MPE predator-prey

0 1 2
1e6

0

5

10

15

Ev
al

ua
tio

n
re

tu
rn

s

IDQN

0 1 2
1e6

VDN

0 1 2
1e6

QMIX

Timesteps

(c) MPE adversary

Figure C.5: Average evaluation returns and 95% confidence intervals for all algorithms
in MPE tasks.

Bibliography

Agarwal, R., Schwarzer, M., Castro, P. S., Courville, A. C., and Bellemare, M.
(2021). Deep reinforcement learning at the edge of the statistical precipice. In
Advances in Neural Information Processing Systems.

Agogino, A. K. and Tumer, K. (2008). Analyzing and visualizing multiagent
rewards in dynamic and stochastic domains. International Conference on Au-
tonomous Agents and Multi-Agent Systems.

Ahilan, S. and Dayan, P. (2019). Feudal multi-agent hierarchies for cooperative
reinforcement learning. In International Conference on Learning Representa-
tions Workshop on Structure & Priors in Reinforcement Learning.

Akkaya, I., Andrychowicz, M., Chociej, M., teusz Litwin, M., McGrew, B.,
Petron, A., Paino, A., Plappert, M., Powell, G., Ribas, R., Schneider, J.,
Tezak, N. A., Tworek, J., Welinder, P., Weng, L., Yuan, Q., Zaremba, W.,
and Zhang, L. M. (2019). Solving rubik’s cube with a robot hand. ArXiv
preprint 1910.07113.

Albrecht, S. V., Christianos, F., and Schäfer, L. (2024). Multi-Agent Reinforce-
ment Learning: Foundations and Modern Approaches. MIT Press.

Albrecht, S. V. and Ramamoorthy, S. (2013). A game-theoretic model and best-
response learning method for ad hoc coordination in multiagent systems. In
International Conference on Autonomous Agents and Multi-Agent Systems.

Albrecht, S. V. and Stone, P. (2017). Reasoning about hypothetical agent be-
haviours and their parameters. In International Conference on Autonomous
Agents and Multi-Agent Systems.

Andoni, A. and Indyk, P. (2008). Near-optimal hashing algorithms for approx-

201

202 Bibliography

imate nearest neighbor in high dimensions. Communications of the ACM,
51(1):117.

Andrychowicz, M., Raichuk, A., Stańczyk, P., Orsini, M., Girgin, S., Marinier,
R., Hussenot, L., Geist, M., Pietquin, O., Michalski, M., Gelly, S., and Bachem,
O. (2021). What matters in on-policy reinforcement learning? A large-scale
empirical study. In International Conference on Learning Representations.

Anschel, O., Baram, N., and Shimkin, N. (2017). Averaged-DQN: Variance re-
duction and stabilization for deep reinforcement learning. In International
Conference on Machine Learning.

Auer, P. (2002). Using confidence bounds for exploitation-exploration trade-offs.
Journal of Machine Learning Research, 3.

Auer, P., Cesa-Bianchi, N., and Fischer, P. (2002). Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47(2-3):235–256.

Azadeh, K., Roy, D., De Koster, R., and Khalilabadi, S. M. G. (2023). Zoning
strategies for humanrobot collaborative picking. Decision Sciences.

Azagirre, X., Balwally, A., Candeli, G., Chamandy, N., Han, B., King, A., Lee,
H., Loncaric, M., Martin, S., Narasiman, V., Qin, Z., Richard, B., Smoot, S.,
Taylor, S., Ryzin, G., Wu, D., Yu, F., and Zamoshchin, A. (2024). A better
match for drivers and riders: Reinforcement learning at Lyft. Informs Journal
on Applied Analytics, 54:71–83.

Bakhtin, A., Brown, N., Dinan, E., Farina, G., Flaherty, C., Fried, D., Goff, A.,
Gray, J., Hu, H., Jacob, A. P., Komeili, M., Konath, K., Kwon, M., Lerer, A.,
Lewis, M., Miller, A. H., Mitts, S., Renduchintala, A., Roller, S., Rowe, D.,
Shi, W., Spisak, J., Wei, A., Wu, D. J., Zhang, H., and Zijlstra, M. (2022).
Human-level play in the game of Diplomacy by combining language models
with strategic reasoning. Science, 378:1067 – 1074.

Barto, A. G. (2013). Intrinsic motivation and reinforcement learning. In In-
trinsically motivated learning in natural and artificial systems, pages 17–47.
Springer.

Bibliography 203

Bellemare, M., Srinivasan, S., Ostrovski, G., Schaul, T., Saxton, D., and Munos,
R. (2016). Unifying count-based exploration and intrinsic motivation. In Ad-
vances in Neural Information Processing Systems.

Bellemare, M. G., Candido, S., Castro, P. S., Gong, J., Machado, M. C., Moitra,
S., Ponda, S. S., and Wang, Z. (2020). Autonomous navigation of stratospheric
balloons using reinforcement learning. Nature, 588(7836):77–82.

Bellman, R. (1957). A Markovian decision process. Indiana University Mathe-
matics Journal, 6:679–684.

Bellman, R. (1966). Dynamic programming. Science, 153(3731):34–37.

Berner, C., Brockman, G., Chan, B., Cheung, V., Dębiak, P., Dennison, C., Farhi,
D., Fischer, Q., Hashme, S., Hesse, C., J ózefowicz, R., Gray, S., Olsson, C.,
Pachocki, J., Petrov, M., Pondé de Oliveira Pinto, H., Raiman, J., Salimans,
T., Schlatter, J., Schneider, J., Sidor, S., Sutskever, I., Tang, J., Wolski, F.,
and Zhang, S. (2019). Dota 2 with large scale deep reinforcement learning.
arXiv preprint 1912.06680.

Bernstein, D. S., Givan, R., Immerman, N., and Zilberstein, S. (2002). The
complexity of decentralized control of Markov decision processes. Mathematics
of Operations Research.

Böhmer, W., Kurin, V., and Whiteson, S. (2020). Deep coordination graphs. In
International Conference on Machine Learning.

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J. D., Dhariwal, P.,
Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss,
A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J.,
Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B.,
Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei,
D. (2020). Language models are few-shot learners. In Advances in Neural
Information Processing Systems.

Brys, T., Harutyunyan, A., Suay, H. B., Chernova, S., Taylor, M. E., and Nowé,
A. (2015). Reinforcement learning from demonstration through shaping. In
International Joint Conference on Artificial Intelligence.

204 Bibliography

Burda, Y., Edwards, H., Pathak, D., Storkey, A., Darrell, T., and Efros, A. A.
(2019a). Large-scale study of curiosity-driven learning. In International Con-
ference on Learning Representations.

Burda, Y., Edwards, H., Storkey, A., and Klimov, O. (2019b). Exploration by
random network distillation. In International Conference on Learning Repre-
sentations.

Chan, S. C., Fishman, S., Canny, J., Korattikara, A., and Guadarrama, S. (2020).
Measuring the reliability of reinforcement learning algorithms. In International
Conference on Learning Representations.

Chapelle, O. and Li, L. (2011). An empirical evaluation of Thompson sampling.
In Advances in Neural Information Processing Systems.

Charikar, M. S. (2002). Similarity estimation techniques from rounding algo-
rithms. In Annual ACM Symposium on Theory of Computing.

Chen, E., Hong, Z.-W., Pajarinen, J., and Agrawal, P. (2022). Redeeming intrin-
sic rewards via constrained optimization. In Advances in Neural Information
Processing Systems.

Cho, K., Van Merriënboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F.,
Schwenk, H., and Bengio, Y. (2014). Learning phrase representations using
RNN encoder-decoder for statistical machine translation. In Conference on
Empirical Methods in Natural Language Processing.

Christianos, F., Papoudakis, G., and Albrecht, S. V. (2023). Pareto actor-critic
for equilibrium selection in multi-agent reinforcement learning. Transactions
on Machine Learning Research.

Christianos, F., Papoudakis, G., Rahman, M. A., and Albrecht, S. V. (2021).
Scaling multi-agent reinforcement learning with selective parameter sharing.
In International Conference on Machine Learning.

Christianos, F., Schäfer, L., and Albrecht, S. V. (2020). Shared experience actor-
critic for multi-agent reinforcement learning. In Advances in Neural Informa-
tion Processing Systems.

Bibliography 205

Ciosek, K., Vuong, Q., Loftin, R., and Hofmann, K. (2019). Better exploration
with optimistic actor critic. In Advances in Neural Information Processing
Systems.

Claes, D., Oliehoek, F., Baier, H., Tuyls, K., et al. (2017). Decentralised online
planning for multi-robot warehouse commissioning. In International Confer-
ence on Autonomous Agents and Multiagent Systems, pages 492–500.

Claus, C. and Boutilier, C. (1998). The dynamics of reinforcement learning in
cooperative multiagent systems. AAAI Conference on Artificial Intelligence.

Clouse, J. A. (1996). Learning from an automated training agent. Adaptation
and Learning in Multiagent Systems.

Covington, P., Adams, J., and Sargin, E. (2016). Deep neural networks for
youtube recommendations. In ACM Conference on Recommender Systems,
pages 191–198.

Da Silva, F. L., Glatt, R., and Costa, A. H. R. (2017). Simultaneously learning
and advising in multiagent reinforcement learning. In International Conference
on Autonomous Agents and Multi-Agent Systems.

Da Silva, F. L., Taylor, M. E., and Costa, A. H. R. (2018). Autonomously
reusing knowledge in multiagent reinforcement learning. In International Joint
Conference on Artificial Intelligence.

Da Silva, F. L., Warnell, G., Costa, A. H. R., and Stone, P. (2020). Agents
teaching agents: A survey on inter-agent transfer learning. Autonomous Agents
and Multi-Agent Systems, 34(1).

Damani, M., Luo, Z., Wenzel, E., and Sartoretti, G. (2020). PRIMAL2: Pathfind-
ing via reinforcement and imitation multi-agent learning - lifelong. Robotics and
Automation Letters, 6:2666–2673.

Dayan, P. and Hinton, G. E. (1992). Feudal reinforcement learning. In Advances
in Neural Information Processing Systems.

de Witt, C. S., Gupta, T., Makoviichuk, D., Makoviychuk, V., Torr, P. H., Sun,
M., and Whiteson, S. (2020). Is independent learning all you need in the
StarCraft multi-agent challenge? arXiv preprint 2011.09533.

206 Bibliography

Dearden, R., Friedman, N., and Russell, S. (1998). Bayesian Q-learning. AAAI.

Degris, T., White, M., and Sutton, R. S. (2012). Off-policy actor-critic. In
International Conference on Machine Learning.

Dematic (2024). Autostore storage and retrieval system. accessed: 2024-02-24.

Dematic (2024). Dematic multishuttle 2. accessed: 2024-02-24.

Dennis, M., Jaques, N., Vinitsky, E., Bayen, A., Russell, S., Critch, A., and
Levine, S. (2020). Emergent complexity and zero-shot transfer via unsupervised
environment design. Advances in Neural Information Processing Systems.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K. (2018). BERT: Pre-training
of deep bidirectional transformers for language understanding. arXiv preprint
1810.04805.

Devlin, S. M. and Kudenko, D. (2012). Dynamic potential-based reward shaping.
In International Conference on Autonomous Agents and Multiagent Systems.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner,
T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., and
Houlsby, N. (2021). An image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on Learning Representations.

Du, Y., Han, L., Fang, M., Liu, J., Dai, T., and Tao, D. (2019). LIIR: Learning
individual intrinsic reward in multi-agent reinforcement learning. In Advances
in Neural Information Processing Systems.

Duan, Y., Chen, X., Houthooft, R., Schulman, J., and Abbeel, P. (2016). Bench-
marking deep reinforcement learning for continuous control. In International
Conference on Machine Learning.

Dwaracherla, V., Lu, X., Ibrahimi, M., Osband, I., Wen, Z., and van Roy, B.
(2020). Hypermodels for exploration. In International Conference on Learning
Representations.

Espeholt, L., Marinier, R., Stanczyk, P., Wang, K., and Michalski, M. (2020).
SEED RL: Scalable and efficient deep-RL with accelerated central inference.
In International Conference on Learning Representations.

Bibliography 207

Espeholt, L., Soyer, H., Munos, R., Simonyan, K., Mnih, V., Ward, T., Doron, Y.,
Firoiu, V., Harley, T., Dunning, I., Legg, S., and Kavukcuoglu, K. (2018). IM-
PALA: Scalable distributed deep-RL with importance weighted actor-learner
architectures. In International Conference on Machine Learning.

Fachantidis, A., Taylor, M. E., and Vlahavas, I. (2019). Learning to teach re-
inforcement learning agents. Machine Learning and Knowledge Extraction,
1(1):21–42.

Flet-Berliac, Y., Ferret, J., Pietquin, O., Preux, P., and Geist, M. (2021). Adver-
sarially guided actor-critic. In International Conference on Learning Represen-
tations.

Foerster, J. N., Farquhar, G., Afouras, T., Nardelli, N., and Whiteson, S. (2018).
Counterfactual multi-agent policy gradients. In AAAI Conference on Artificial
Intelligence.

Fu, H., Yu, S., Littman, M., and Konidaris, G. (2022a). Model-based lifelong
reinforcement learning with Bayesian exploration. In Advances in Neural In-
formation Processing Systems.

Fu, W., Yu, C., Xu, Z., Yang, J., and Wu, Y. (2022b). Revisiting some common
practices in cooperative multi-agent reinforcement learning. In International
Conference on Machine Learning.

Fujimoto, S., van Hoof, H., and Meger, D. (2018). Addressing function approxi-
mation error in actor-critic methods. In International Conference on Machine
Learning.

Fukushima, K. (1980). Neocognitron: A self-organizing neural network model for
a mechanism of pattern recognition unaffected by shift in position. Biological
cybernetics, 36(4):193–202.

Gallici, M., Fellows, M., Ellis, B., Pou, B., Masmitja, I., Foerster, J. N., and Mar-
tin, M. (2024). Simplifying deep temporal difference learning. arXiv preprint
2407.04811.

Gao, Y., Xu, H., Lin, J., Yu, F., Levine, S., and Darrell, T. (2018). Reinforce-
ment learning from imperfect demonstrations. In International Conference on
Machine Learning.

208 Bibliography

Gerstgrasser, M., Danino, T., and Keren, S. (2024). Selectively sharing expe-
riences improves multi-agent reinforcement learning. In Advances in Neural
Information Processing Systems.

Goodfellow, I., Bengio, Y., Courville, A., and Bengio, Y. (2016). Deep Learning,
volume 1. MIT Press.

Greshler, N., Gordon, O., Salzman, O., and Shimkin, N. (2021). Cooperative
multi-agent path finding: Beyond path planning and collision avoidance. In
International Symposium on Multi-Robot and Multi-Agent Systems.

Guestrin, C., Koller, D., and Parr, R. (2001). Multiagent planning with factored
MDPs. In Advances in Neural Information Processing Systems.

Guestrin, C., Lagoudakis, M. G., and Parr, R. (2002). Coordinated reinforcement
learning. In International Conference on Machine Learning.

Gupta, J. K., Egorov, M., and Kochenderfer, M. (2017). Cooperative multi-
agent control using deep reinforcement learning. In Autonomous Agents and
Multiagent Systems Workshops, pages 66–83. Springer.

Haarnoja, T., Zhou, A., Abbeel, P., and Levine, S. (2018). Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor.
In International Conference on Machine Learning.

Hansen, E. A., Bernstein, D. S., and Zilberstein, S. (2004). Dynamic programming
for partially observable stochastic games. In AAAI Conference on Artificial
Intelligence.

Hart, P., Nilsson, N., and Raphael, B. (1968). A formal basis for the heuristic
determination of minimum cost paths. IEEE Transactions on Systems Science
and Cybernetics, 4(2):100–107.

Hausknecht, M. and Stone, P. (2015). Deep recurrent Q-learning for partially
observable MDPs. In AAAI Fall Symposium Series.

He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep residual learning for image
recognition. In Conference on Computer Vision and Pattern Recognition.

Bibliography 209

He, X., Liao, L., Zhang, H., Nie, L., Hu, X., and Chua, T.-S. (2017). Neural
collaborative filtering. In International Conference on World Wide Web, pages
173–182.

Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D., and Meger, D.
(2018). Deep reinforcement learning that matters. In AAAI Conference on
Artificial Intelligence.

Hernandez-Leal, P., Kartal, B., and Taylor, M. E. (2019). A survey and critique of
multiagent deep reinforcement learning. Autonomous Agents and Multi-Agent
Systems, 33(6):750–797.

Hessel, M., Modayil, J., Van Hasselt, H., Schaul, T., Ostrovski, G., Dabney, W.,
Horgan, D., Piot, B., Azar, M., and Silver, D. (2018). Rainbow: Combining
improvements in deep reinforcement learning. In AAAI Conference on Artificial
Intelligence.

Ho, J. and Ermon, S. (2016). Generative adversarial imitation learning. In
Advances in Neural Information Processing Systems.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8):1735–1780.

Howard, R. A. (1964). Dynamic programming and Markov processes. New York:
John-Wiley.

Huang, S. and Ontañón, S. (2022). A closer look at invalid action masking in
policy gradient algorithms. In International FLAIRS Conference.

Iqbal, S. and Sha, F. (2019). Coordinated exploration via intrinsic rewards for
multi-agent reinforcement learning. arXiv preprint 1905.12127.

Jaderberg, M., Czarnecki, W. M., Dunning, I., Marris, L., Lever, G., Castañeda,
A. G., Beattie, C., Rabinowitz, N. C., Morcos, A. S., Ruderman, A., Sonnerat,
N., Green, T., Deason, L., Leibo, J. Z., Silver, D., Hassabis, D., Kavukcuoglu,
K., and Graepel, T. (2019). Human-level performance in 3D multiplayer games
with population-based reinforcement learning. Science, 364(6443):859–865.

Jang, E., Gu, S., and Poole, B. (2017). Categorical reparameterization with
gumbel-softmax. In International Conference on Learning Representations.

210 Bibliography

Janz, D., Hron, J., Mazur, P., Hofmann, K., Hernández-Lobato, J. M., and
Tschiatschek, S. (2019). Successor uncertainties: Exploration and uncertainty
in temporal difference learning. In Advances in Neural Information Processing
Systems.

Jaques, N., Ghandeharioun, A., Shen, J. H., Ferguson, C., Lapedriza, A., Jones,
N., Gu, S., and Picard, R. (2019). Way off-policy batch deep reinforcement
learning of implicit human preferences in dialog. arXiv preprint 1907.00456.

Jiang, M., Grefenstette, E., and Rocktäschel, T. (2021). Prioritized level replay.
In International Conference on Machine Learning.

Kaelbling, L. P., Littman, M. L., and Cassandra, A. R. (1998). Planning and act-
ing in partially observable stochastic domains. Artificial Intelligence, 101(1):99–
134.

Kang, W.-C. and McAuley, J. (2018). Self-attentive sequential recommendation.
In International Conference on Data Mining, pages 197–206. IEEE.

Kendall, A., Hawke, J., Janz, D., Mazur, P., Reda, D., Allen, J.-M., Lam, V.-D.,
Bewley, A., and Shah, A. (2019). Learning to drive in a day. In International
Conference on Robotics and Automation.

Kim, J.-B., Choi, H.-B., Hwang, G.-Y., Kim, K., Hong, Y.-G., and Han, Y.-
H. (2020). Sortation control using multi-agent deep reinforcement learning in
N-grid sortation system. Sensors, 20(12).

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization.
In International Conference on Learning Representations.

Kok, J. R. and Vlassis, N. (2005). Using the max-plus algorithm for multiagent
decision making in coordination graphs. In Belgium-Netherlands Conference
on Artificial Intelligence.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). ImageNet classification
with deep convolutional neural networks. In Advances in Neural Information
Processing Systems.

Krnjaic, A., Steleac, R. D., Thomas, J. D., Papoudakis, G., Schäfer, L., To,
A. W. K., Lao, K.-H., Cubuktepe, M., Haley, M., Börsting, P., and Albrecht,

Bibliography 211

S. V. (2024). Scalable multi-agent reinforcement learning for warehouse logistics
with robotic and human co-workers. In IEEE/RSJ International Conference
on Intelligent Robots and Systems.

Lanctot, M., Zambaldi, V., Gruslys, A., Lazaridou, A., Tuyls, K., Pérolat, J.,
Silver, D., and Graepel, T. (2017). A unified game-theoretic approach to mul-
tiagent reinforcement learning. In Advances in neural information processing
systems.

Lee, K., Laskin, M., Srinivas, A., and Abbeel, P. (2021). SUNRISE: A simple
unified framework for ensemble learning in deep reinforcement learning. In
International Conference on Machine Learning.

Leibo, J. Z., Perolat, J., Hughes, E., Wheelwright, S., Marblestone, A. H., Duéñez-
Guzman, E., Sunehag, P., Dunning, I., and Graepel, T. (2019). Malthusian re-
inforcement learning. In International Joint Conference on Autonomous Agents
and Multi-Agent Systems.

Leroy, P., Morato, P. G., Pisane, J., Kolios, A., and Ernst, D. (2023). IMP-MARL:
A suite of environments for large-scale infrastructure management planning
via MARL. In Advances in Neural Information Processing Systems, Track on
Datasets and Benchmarks.

Levine, S., Kumar, A., Tucker, G., and Fu, J. (2020). Offline reinforcement
learning: Tutorial, review, and perspectives on open problems. arXiv preprint
2005.01643.

Li, C., Wang, T., Wu, C., Zhao, Q., Yang, J., and Zhang, C. (2021a). Celebrating
diversity in shared multi-agent reinforcement learning. In Advances in Neural
Information Processing Systems.

Li, J., Tinka, A., Kiesel, S., Durham, J. W., Kumar, T. K. S., and Koenig, S.
(2021b). Lifelong multi-agent path finding in large-scale warehouses. In AAAI
Conference on Artificial Intelligence.

Li, Q., Gama, F., Ribeiro, A., and Prorok, A. (2020). Graph neural networks
for decentralized multi-robot path planning. In International Conference on
Intelligent Robots and Systems.

212 Bibliography

Li, W., Chen, H., Jin, B., Tan, W., Zha, H., and Wang, X. (2022). Multi-
agent path finding with prioritized communication learning. In International
Conference on Robotics and Automation.

Li, X., Luo, W., Yuan, M., Wang, J., Lu, J., Wang, J., Lu, J., and Zeng, J. (2021c).
Learning to optimize industry-scale dynamic pickup and delivery problems. In
International Conference on Data Engineering, pages 2511–2522. IEEE.

Liang, L., Xu, Y., McAleer, S., Hu, D., Ihler, A., Abbeel, P., and Fox, R. (2022).
Reducing variance in temporal-difference value estimation via ensemble of deep
networks. In International Conference on Machine Learning.

Lillicrap, T. P., Hunt, J. J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver, D.,
and Wierstra, D. (2016). Continuous control with deep reinforcement learning.
In Conference on Learning Representations.

Lin, L.-J. (1992a). Reinforcement learning for robots using neural networks.
Carnegie Mellon University.

Lin, L.-J. (1992b). Self-improving reactive agents based on reinforcement learning,
planning and teaching. Machine Learning, 8(3-4):293–321.

Littman, M. L. (1994). Markov games as a framework for multi-agent reinforce-
ment learning. In Machine Learning, pages 157–163. Elsevier.

Liu, E. Z., Raghunathan, A., Liang, P., and Finn, C. (2021a). Decoupling explo-
ration and exploitation for meta-reinforcement learning without sacrifices. In
International Conference on Machine Learning.

Liu, I.-J., Jain, U., Yeh, R. A., and Schwing, A. (2021b). Cooperative exploration
for multi-agent deep reinforcement learning. In International Conference on
Machine Learning.

Löffler, M., Boysen, N., and Schneider, M. (2022). Picker routing in AGV-assisted
order picking systems. Informs Journal on Computing, 34(1):440–462.

Long, Q., Zhou, Z., Gupta, A., Fang, F., Wu, Y., and Wang, X. (2020). Evolu-
tionary population curriculum for scaling multi-agent reinforcement learning.
In International Conference on Learning Representations.

Bibliography 213

Lowe, R., Wu, Y., Tamar, A., Harb, J., Abbeel, P., and Mordatch, I. (2017).
Multi-agent actor-critic for mixed cooperative-competitive environments. In
Advances in Neural Information Processing Systems.

Ma, H., Li, J., Kumar, T. K. S., and Koenig, S. (2017). Lifelong multi-agent path
finding for online pickup and delivery tasks. In International Conference on
Autonomous Agents and Multiagent Systems.

Maddison, C. J., Mnih, A., and Teh, Y. W. (2017). The concrete distribution: A
continuous relaxation of discrete random variables. In International Conference
on Learning Representations.

Mahajan, A., Rashid, T., Samvelyan, M., and Whiteson, S. (2019). MAVEN:
Multi-agent variational exploration. In Advances in Neural Information Pro-
cessing Systems.

Mark, M. S., Sharma, A., Tajwar, F., Rafailov, R., Levine, S., and Finn, C.
(2023). Offline retraining for online RL: Decoupled policy learning to mitigate
exploration bias. arXiv preprint 2310.08558.

McAleer, S., Farina, G., Lanctot, M., and Sandholm, T. (2023). ESCHER: Es-
chewing importance sampling in games by computing a history value function
to estimate regret. In International Conference on Learning Representations.

McInroe, T., Jelley, A., Albrecht, S. V., and Storkey, A. (2024). Planning to go
out-of-distribution in offline-to-online reinforcement learning. In Reinforcement
Learning Conference.

Melo, F. S. (2001). Convergence of Q-learning: A simple proof. Institute Of
Systems and Robotics, pages 1–4.

Mguni, D. H., Jafferjee, T., Wang, J., Perez-Nieves, N., Slumbers, O., Tong, F., Li,
Y., Zhu, J., Yang, Y., and Wang, J. (2022). LIGS: Learnable intrinsic-reward
generation selection for multi-agent learning. In International Conference on
Learning Representations.

Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D.,
and Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement
learning. In International Conference on Machine Learning.

214 Bibliography

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G.,
Graves, A., Riedmiller, M. A., Fidjeland, A. K., Ostrovski, G., Petersen, S.,
Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D.,
Legg, S., and Hassabis, D. (2015). Human-level control through deep reinforce-
ment learning. Nature, 518(7540):529–533.

Mordatch, I. and Abbeel, P. (2018). Emergence of grounded compositional lan-
guage in multi-agent populations. In AAAI Conference on Artificial Intelli-
gence.

Munos, R., Stepleton, T., Harutyunyan, A., and Bellemare, M. G. (2016). Safe
and efficient off-policy reinforcement learning. In Advances in Neural Informa-
tion Processing Systems.

Nash, J. (1951). Non-cooperative games. Annals of mathematics, pages 286–295.

Oliehoek, F. A. (2010). Value-based planning for teams of agents in stochastic
partially observable environments. PhD thesis, University of Amsterdam.

Oliehoek, F. A. and Amato, C. (2016). A Concise Introduction to Decentralized
POMDPs, volume 1. Springer.

Oliehoek, F. A., Spaan, M. T. J., and Vlassis, N. (2008). Optimal and approxi-
mate Q-value functions for decentralized POMDPs. Journal of Artificial Intel-
ligence Research, 32:289–353.

Oliehoek, F. A., Whiteson, S., and Spaan, M. T. J. (2013). Approximate solutions
for factored Dec-POMDPs with many agents. In International Conference on
Autonomous Agents and Multiagent Systems.

Oliehoek, F. A., Witwicki, S. J., and Kaelbling, L. P. (2012). Influence-based
abstraction for multiagent systems. In AAAI Conference on Artificial Intelli-
gence.

Osband, I., Blundell, C., Pritzel, A., and van Roy, B. (2016a). Deep exploration
via bootstrapped DQN. In Advances in Neural Information Processing Systems.

Osband, I., Doron, Y., Hessel, M., Aslanides, J., Sezener, E., Saraiva, A., McK-
inney, K., Lattimore, T., Szepesvari, C., Singh, S., Roy, B. V., Sutton, R. S.,
Silver, D., and Hasselt, H. V. (2020). Behaviour suite for reinforcement learning.
In International Conference on Learning Representations.

Bibliography 215

Osband, I., Russo, D., and van Roy, B. (2013). (More) efficient reinforcement
learning via posterior sampling. In Advances in Neural Information Processing
Systems.

Osband, I. and van Roy, B. (2017). Why is posterior sampling better than op-
timism for reinforcement learning? In International Conference on Machine
Learning.

Osband, I., van Roy, B., Russo, D. J., and Wen, Z. (2019). Deep exploration via
randomized value functions. Journal of Machine Learning Research, 20(124).

Osband, I., van Roy, B., and Wen, Z. (2016b). Generalization and exploration via
randomized value functions. In International Conference on Machine Learning.

Ostrovski, G., Bellemare, M. G., van den Oord, A., and Munos, R. (2017). Count-
based exploration with neural density models. In International Conference on
Machine Learning.

Oudeyer, P.-Y. and Kaplan, F. (2008). How can we define intrinsic motivation.
In Conference on Epigenetic Robotics.

Oudeyer, P.-Y. and Kaplan, F. (2009). What is intrinsic motivation? A typology
of computational approaches. Frontiers in Neurorobotics, 1:6.

Pan, S. J. and Yang, Q. (2009). A survey on transfer learning. Transactions on
Knowledge and Data Engineering, 22(10):1345–1359.

Papoudakis, G., Christianos, F., Rahman, A., and Albrecht, S. V. (2019). Deal-
ing with non-stationarity in multi-agent deep reinforcement learning. arXiv
preprint 1906.04737.

Papoudakis, G., Christianos, F., Schäfer, L., and Albrecht, S. V. (2021). Bench-
marking multi-agent deep reinforcement learning algorithms in cooperative
tasks. In Advances in Neural Information Processing Systems, Track on
Datasets and Benchmarks.

Parker-Holder, J., Jiang, M., Dennis, M., Samvelyan, M., Foerster, J., Grefen-
stette, E., and Rocktäschel, T. (2022). Evolving curricula with regret-based
environment design. In International Conference on Machine Learning.

216 Bibliography

Pathak, D., Agrawal, P., Efros, A. A., and Darrell, T. (2017). Curiosity-driven
exploration by self-supervised prediction. In International Conference on Ma-
chine Learning, volume 2017.

Pérolat, J., de Vylder, B., Hennes, D., Tarassov, E., Strub, F., de Boer, V., Muller,
P., Connor, J. T., Burch, N., Anthony, T., McAleer, S., Elie, R., Cen, S. H.,
Wang, Z., Gruslys, A., Malysheva, A., Khan, M., Ozair, S., Timbers, F., Pohlen,
T., Eccles, T., Rowland, M., Lanctot, M., Lespiau, J.-B., Piot, B., Omidshafiei,
S., Lockhart, E., Sifre, L., Beauguerlange, N., Munos, R., Silver, D., Singh, S.,
Hassabis, D., and Tuyls, K. (2022). Mastering the game of Stratego with
model-free multiagent reinforcement learning. Science, 378(6623):990–996.

Petersen, C. G. and Schmenner, R. W. (1999). An evaluation of routing and
volume-based storage policies in an order picking operation. Decision Sciences,
30(2):481–501.

Precup, D. (2000). Eligibility traces for off-policy policy evaluation. Computer
Science Department Faculty Publication Series, page 80.

Quicktron (2024). Quicktron QuickBin. accessed: 2024-02-24.

Raileanu, R. and Rocktäschel, T. (2020). RIDE: Rewarding impact-driven explo-
ration for procedurally-generated environments. In International Conference
on Learning Representations.

Rashid, T., Peng, B., Boehmer, W., and Whiteson, S. (2020a). Optimistic ex-
ploration even with a pessimistic initialisation. In International Conference on
Learning Representations.

Rashid, T., Samvelyan, M., de Witt, C. S., Farquhar, G., Foerster, J., and White-
son, S. (2020b). Monotonic value function factorisation for deep multi-agent
reinforcement learning. Journal of Machine Learning Research, 21(1).

Rosenblatt, F. (1958). The perceptron: A probabilistic model for information
storage and organization in the brain. Psychological review, 65(6):386.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning represen-
tations by back-propagating errors. Nature, 323(6088):533–536.

Bibliography 217

Ryu, H., Shin, H., and Park, J. (2022). REMAX: Relational representation for
multi-agent exploration. In International Conference on Autonomous Agents
and Multiagent Systems.

Samvelyan, M., Rashid, T., de Witt, C. S., Farquhar, G., Nardelli, N., Rudner,
T. G., Hung, C.-M., Torr, P. H., Foerster, J., and Whiteson, S. (2019). The Star-
Craft multi-agent challenge. International Conference on Autonomous Agents
and Multi-Agent Systems.

Sartoretti, G., Kerr, J., Shi, Y., Wagner, G., Kumar, T. K. S., Koenig, S., and
Choset, H. (2018). PRIMAL: Pathfinding via reinforcement and imitation
multi-agent learning. Robotics and Automation Letters, 4:2378–2385.

Schaal, S. (1997). Learning from demonstration. In Advances in Neural Informa-
tion Processing Systems.

Schäfer, L. (2019). Curiosity in multi-agent reinforcement learning. Master’s
thesis, University of Edinburgh.

Schäfer, L., Christianos, F., Hanna, J. P., and Albrecht, S. V. (2022). Decou-
pled reinforcement learning to stabilise intrinsically-motivated exploration. In
International Conference on Autonomous Agents and Multiagent Systems.

Schaul, T., Quan, J., Antonoglou, I., and Silver, D. (2016). Prioritized experience
replay. In International Conference on Learning Representations.

Schmidhuber, J. (1991). Curious model-building control systems. In International
Joint Conference on Neural Networks. IEEE.

Schulman, J., Levine, S., Abbeel, P., Jordan, M., and Moritz, P. (2015). Trust
region policy optimization. In International Conference on Machine Learning.

Schulman, J., Moritz, P., Levine, S., Jordan, M., and Abbeel, P. (2016). High-
dimensional continuous control using generalized advantage estimation. In In-
ternational Conference on Learning Representations.

Schulman, J., Wolski, F., Dhariwal, P., Radford, A., and Klimov, O. (2017).
Proximal policy optimization algorithms. arXiv preprint 1707.06347.

Scott, S. L. (2010). A modern Bayesian look at the multi-armed bandit. Applied
Stochastic Models in Business and Industry, 26(6).

218 Bibliography

Sessa, P. G., Kamgarpour, M., and Krause, A. (2022). Efficient model-based
multi-agent reinforcement learning via optimistic equilibrium computation. In
International Conference on Machine Learning.

Shapley, L. S. (1953). Stochastic games. National Academy of Sciences of the
United States of America, 39(10):1095–1100.

Shen, M. and How, J. P. (2023). Implicit ensemble training for efficient and
robust multiagent reinforcement learning. Transactions on Machine Learning
Research.

Shetty, N., Sah, B., and Chung, S. H. (2020). Route optimization for warehouse
order picking operations via vehicle routing and simulation. SN Applied Sci-
ences, 2(2):1–18.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G.,
Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman,
S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T. P., Leach,
M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016). Mastering the
game of Go with deep neural networks and tree search. Nature, 529(7587):484–
489.

Silver, D., Lever, G., Heess, N., Degris, T., Wierstra, D., and Riedmiller, M.
(2014). Deterministic policy gradient algorithms. In International Conference
on Machine Learning.

Sokota, S., D’Orazio, R., Kolter, J. Z., Loizou, N., Lanctot, M., Mitliagkas, I.,
Brown, N., and Kroer, C. (2023). A unified approach to reinforcement learning,
quantal response equilibria, and two-player zero-sum games. In International
Conference on Learning Representations.

Son, K., Kim, D., Kang, W. J., Hostallero, D. E., and Yi, Y. (2019). QTRAN:
Learning to factorize with transformation for cooperative multi-agent reinforce-
ment learning. In International Conference on Machine Learning.

Song, Y., Romero, A., Müller, M., Koltun, V., and Scaramuzza, D. (2023). Reach-
ing the limit in autonomous racing: Optimal control versus reinforcement learn-
ing. Science Robotics, 8(82).

Bibliography 219

Strehl, A. L. and Littman, M. L. (2008). An analysis of model-based interval
estimation for Markov decision processes. Journal of Computer and System
Sciences, 74:1309–1331.

Sunehag, P., Lever, G., Gruslys, A., Czarnecki, W. M., Zambaldi, V. F., Jader-
berg, M., Lanctot, M., Sonnerat, N., Leibo, J. Z., Tuyls, K., and Graepel, T.
(2018). Value-decomposition networks for cooperative multi-agent learning. In
International Conference on Autonomous Agents and Multi-Agent Systems.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning, 3(1):9–44.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement Learning: An Introduction.
MIT press.

Taïga, A. A., Fedus, W., Machado, M. C., Courville, A., and Bellemare, M. G.
(2020). On bonus-based exploration methods in the arcade learning environ-
ment. In International Conference on Learning Representations.

Tan, M. (1993). Multi-agent reinforcement learning: Independent vs. cooperative
agents. In International Conference on Machine Learning.

Tang, H., Houthooft, R., Foote, D., Stooke, A., Chen, X., Duan, Y., Schulman, J.,
De Turck, F., and Abbeel, P. (2017). # Exploration: A study of count-based
exploration for deep reinforcement learning. In Advances in Neural Information
Processing Systems.

Taylor, M. E., Suay, H. B., and Chernova, S. (2011). Integrating reinforcement
learning with human demonstrations of varying ability. In International Con-
ference on Autonomous Agents and Multi-Agent Systems.

Team, A. A., Bauer, J., Baumli, K., Baveja, S., Behbahani, F. M. P., Bhoopchand,
A., Bradley-Schmieg, N., Chang, M., Clay, N., Collister, A., Dasagi, V., Gon-
zalez, L., Gregor, K., Hughes, E., Kashem, S., Loks-Thompson, M., Openshaw,
H., Parker-Holder, J., Pathak, S., Nieves, N. P., Rakicevic, N., Rocktäschel,
T., Schroecker, Y., Sygnowski, J., Tuyls, K., York, S., Zacherl, A., and Zhang,
L. M. (2023a). Human-timescale adaptation in an open-ended task space. In
International Conference on Machine Learning.

220 Bibliography

Team, G., Anil, R., Borgeaud, S., Wu, Y., Alayrac, J.-B., Yu, J., Soricut, R.,
Schalkwyk, J., Dai, A. M., Hauth, A., et al. (2023b). Gemini: A family of
highly capable multimodal models. arXiv preprint 2312.11805.

Team, S., Raad, M. A., Ahuja, A., Barros, C., Besse, F., Bolt, A., Bolton, A.,
Brownfield, B., Buttimore, G., Cant, M., Chakera, S., Chan, S. C. Y., Clune,
J., Collister, A., Copeman, V., Cullum, A., Dasgupta, I., de Cesare, D., Tra-
pani, J. D., Donchev, Y., Dunleavy, E., Engelcke, M., Faulkner, R., Garcia,
F., Gbadamosi, C. T. T., Gong, Z., Gonzales, L., Gregor, K., Hallingstad,
A. O., Harley, T., Haves, S., Hill, F., Hirst, E., Hudson, D. A., Hughes-Fitt, S.,
Rezende, D. J., Jasarevic, M., Kampis, L., Ke, R., Keck, T., Kim, J., Knagg,
O., Kopparapu, K., Lampinen, A. K., Legg, S., Lerchner, A., Limont, M., Liu,
Y., Loks-Thompson, M., Marino, J., Cussons, K. M., Matthey, L., Mcloughlin,
S., Mendolicchio, P., Merzic, H., Mitenkova, A., Moufarek, A., and Oliveira,
V. (2024). Scaling instructable agents across many simulated worlds. arXiv
preprint 2404.10179.

Thompson, W. R. (1933). On the likelihood that one unknown probability exceeds
another in view of the evidence of two samples. Biometrika, 25(3/4):285–294.

Tilbury, C. R., Christianos, F., and Albrecht, S. V. (2023). Revisiting the gumbel-
softmax in maddpg. In International Conference on Autonomous Agents and
Multi-Agent Systems Workshop on Adaptive and Learning Agents.

Torbati, R. J., Lohiya, S., Singh, S., Nigam, M. S., and Ravichandar, H. (2023).
MARBLER: An open platform for standardized evaluation of multi-robot re-
inforcement learning algorithms. In International Symposium on Multi-Robot
and Multi-Agent Systems. IEEE.

Touvron, H., Martin, L., Stone, K. R., Albert, P., Almahairi, A., Babaei, Y.,
Bashlykov, N., Batra, S., Bhargava, P., Bhosale, S., Bikel, D. M., Blecher, L.,
Ferrer, C. C., Chen, M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn, A. S., Hosseini, S., Hou,
R., Inan, H., Kardas, M., Kerkez, V., Khabsa, M., Kloumann, I. M., Korenev,
A. V., Koura, P. S., Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog, I., Nie, Y., Poulton,
A., Reizenstein, J., Rungta, R., Saladi, K., Schelten, A., Silva, R., Smith,
E. M., Subramanian, R., Tan, X., Tang, B., Taylor, R., Williams, A., Kuan,

Bibliography 221

J. X., Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur, M., Narang,
S., Rodriguez, A., Stojnic, R., Edunov, S., and Scialom, T. (2023). LLAMA 2:
Open foundation and fine-tuned chat models. arXiv preprint 2307.09288.

Tumer, K. and Agogino, A. (2007). Distributed agent-based air traffic flow man-
agement. In International Joint Conference on Autonomous Agents and Mul-
tiagent Systems.

Tyrrell, T. (1993). Computational mechanisms for action selection. PhD thesis,
University of Edinburgh.

van den Berg, J. P., Guy, S. J., Lin, M. C., and Manocha, D. (2011). Reciprocal
n-body collision avoidance. In International Symposium of Robotics Research.

van der Pol, E. (2016). Deep reinforcement learning for coordination in traffic
light control. PhD thesis, University of Amsterdam.

van Hasselt, H. (2010). Double Q-learning. Advances in Neural Information
Processing Systems.

van Hasselt, H., Doron, Y., Strub, F., Hessel, M., Sonnerat, N., and Mo-
dayil, J. (2018). Deep reinforcement learning and the deadly triad. arXiv
preprint:1812.02648.

van Hasselt, H., Guez, A., and Silver, D. (2016). Deep reinforcement learning
with double q-learning. In AAAI Conference on Artificial Intelligence.

Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung,
J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss,
M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg,
M., Vezhnevets, A. S., Leblond, R., Pohlen, T., Dalibard, V., Budden, D.,
Sulsky, Y., Molloy, J., Le Paine, T., Gülç ehre, Ç., Wang, Z., Pfaff, T., Wu,
Y., Ring, R., Yogatama, D., Wünsch, D., McKinney, K., Smith, O., Schaul, T.,
Lillicrap, T. P., Kavukcuoglu, K., Hassabis, D., Apps, C., and Silver, D. (2019).
Grandmaster level in StarCraft II using multi-agent reinforcement learning.
Nature, 575(7782):350–354.

Wang, G., Xie, Y., Jiang, Y., Mandlekar, A., Xiao, C., Zhu, Y., Fan, L., and
Anandkumar, A. (2023). Voyager: An open-ended embodied agent with large
language models. arXiv preprint Arxiv-2305.16291.

222 Bibliography

Wang, J. X., Hughes, E., Fernando, C., Czarnecki, W. M., Duéñez Guzmán, E. A.,
and Leibo, J. Z. (2019a). Evolving intrinsic motivations for altruistic behavior.
In International Conference on Autonomous Agents and Multi-Agent Systems.

Wang, T., Bao, X., Clavera, I., Hoang, J., Wen, Y., Langlois, E., Zhang, S., Zhang,
G., Abbeel, P., and Ba, J. (2019b). Benchmarking model-based reinforcement
learning. arXiv preprint 1907.02057.

Wang, T., Dong, H., Lesser, V., and Zhang, C. (2020a). ROMA: Multi-agent
reinforcement learning with emergent roles. In International Conference on
Machine Learning.

Wang, T., Wang, J., Wu, Y., and Zhang, C. (2020b). Influence-based multi-agent
exploration. In International Conference on Learning Representations.

Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis, King’s
College, Cambridge.

Watkins, C. J. C. H. and Dayan, P. (1992). Q-learning. Machine Learning, 8(3-
4):279–292.

Weyns, D., Holvoet, T., Schelfthout, K., and Wielemans, J. (2008). Decentralized
control of automatic guided vehicles: applying multi-agent systems in practice.
In ACM SIGPLAN Conference on Object-Oriented Programming Systems Lan-
guages and Applications, pages 663–674.

Whitney, W. F., Bloesch, M., Springenberg, J. T., Abdolmaleki, A., and Ried-
miller, M. (2021). Decoupled exploration and exploitation policies for sample-
efficient reinforcement learning. arXiv preprint 2101.09458.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning. Machine Learning, 8(3-4):229–256.

Wolpert, D. H. and Tumer, K. (1999). An introduction to collective intelligence.
arXiv preprint cs/9908014.

Wolpert, D. H. and Tumer, K. (2002). Optimal payoff functions for members of
collectives. In Modeling Complexity in Economic and Social Systems.

Wolpert, D. H., Tumer, K., and Swanson, K. (2000). Optimal wonderful life
utility functions in multi-agent systems.

Bibliography 223

Wu, P., Escontrela, A., Hafner, D., Abbeel, P., and Goldberg, K. (2023). Day-
dreamer: World models for physical robot learning. In Conference on Robot
Learning.

Wu, Y., Tucker, G., and Nachum, O. (2019). Behavior regularized offline rein-
forcement learning. arXiv preprint 1911.11361.

Wurman, P. R., Barrett, S., Kawamoto, K., MacGlashan, J., Subramanian, K.,
Walsh, T. J., Capobianco, R., Devlic, A., Eckert, F., Fuchs, F., Gilpin, L.,
Khandelwal, P., Kompella, V., Lin, H., MacAlpine, P., Oller, D., Seno, T.,
Sherstan, C., Thomure, M. D., Aghabozorgi, H., Barrett, L., Douglas, R.,
Whitehead, D., Dürr, P., Stone, P., Spranger, M., and Kitano, H. (2022). Out-
racing champion Gran Turismo drivers with deep reinforcement learning. Na-
ture, 602(7896):223–228.

Wurman, P. R., D’Andrea, R., and Mountz, M. (2008). Coordinating Hundreds
of Cooperative, Autonomous Vehicles in Warehouses. AI Magazine, 29(1):9.

Xiao, Y., Hoffman, J., and Amato, C. (2020). Macro-action-based deep multi-
agent reinforcement learning. In Conference on Robot Learning.

Xu, Q., Li, J., Koenig, S., and Ma, H. (2022). Multi-goal multi-agent pickup and
delivery. In International Conference on Intelligent Robots and Systems.

Yan, Y., Chow, A. H., Ho, C. P., Kuo, Y.-H., Wu, Q., and Ying, C. (2022). Rein-
forcement learning for logistics and supply chain management: Methodologies,
state of the art, and future opportunities. Transportation Research Part E:
Logistics and Transportation Review, 162:102712.

Yu, C., Velu, A., Vinitsky, E., Wang, Y., Bayen, A., and Wu, Y. (2022). The
surprising effectiveness of PPO in cooperative multi-agent games. In Advances
in Neural Information Processing Systems, Track on Datasets and Benchmarks.

Zheng, L., Chen, J., Wang, J., He, J., Hu, Y., Chen, Y., Fan, C., Gao, Y., and
Zhang, C. (2021). Episodic multi-agent reinforcement learning with curiosity-
driven exploration. In Advances in Neural Information Processing Systems.

Zhong, R., Hanna, J. P., Schäfer, L., and Albrecht, S. V. (2021). Robust on-
policy data collection for data-efficient policy evaluation. In Neural Information
Processing Systems Conference Workshop on Offline Reinforcement Learning.

224 Bibliography

Zhou, M., Luo, J., Villela, J., Yang, Y., Rusu, D., Miao, J., Zhang, W., Alban, M.,
Fadakar, I., Chen, Z., ping Huang, C., Wen, Y., Hassanzadeh, K., Graves, D.,
Zhu, Z., Ni, Y., Nguyen, N. M., Elsayed, M., Ammar, H., Cowen-Rivers, A. I.,
Ahilan, S., Tian, Z., Palenicek, D., Rezaee, K., Yadmellat, P., Shao, K., Chen,
D., Zhang, B., Zhang, H., Hao, J., Liu, W., and Wang, J. (2021). SMARTS: An
open-source scalable multi-agent RL training school for autonomous driving. In
Conference on Robot Learning.

Zhou, Y., Li, J., and Zhu, J. (2020). Posterior sampling for multi-agent rein-
forcement learning: Solving extensive games with imperfect information. In
International Conference on Learning Representations.

Ziebart, B. D., Maas, A. L., Bagnell, J. A., and Dey, A. K. (2008). Maximum
entropy inverse reinforcement learning. In AAAI Conference on Artificial In-
telligence, volume 8, pages 1433–1438.

Zimmer, M., Viappiani, P., and Weng, P. (2014). Teacher-student framework: A
reinforcement learning approach. In International Conference on Autonomous
Agents and Multi-Agent Systems Workshop.

Zong, Z., Feng, T., Xia, T., Jin, D., and Li, Y. (2021). Deep reinforcement
learning for demand driven services in logistics and transportation systems: A
survey. arXiv preprint 2108.04462.

Žulj, I., Salewski, H., Goeke, D., and Schneider, M. (2022). Order batching and
batch sequencing in an AMR-assisted picker-to-parts system. European Journal
of Operational Research, 298(1):182–201.

	Acronyms
	Introduction
	Scope and Limitations
	Thesis Outline and Contributions
	Publications

	Problem Settings and Preliminary Algorithms
	Markov Decision Processes
	Partially Observable Markov Decision Processes
	Single-Agent Reinforcement Learning
	Value Functions
	Q-Learning and Deep Q-Networks
	Policy Gradient Algorithms

	Partially Observable Stochastic Games
	Decentralised Partially Observable Markov Decision Processes
	Multi-Agent Reinforcement Learning
	Independent Learning
	Centralised Training Decentralised Execution

	Decoupled Reinforcement Learning
	Intrinsically Motivated Exploration
	Count-based Intrinsic Rewards
	Prediction-based Intrinsic Rewards

	Decoupled Reinforcement Learning
	Decoupled Actor-Critic
	Decoupled Deep Q-Networks

	Evaluation Details
	Algorithms
	Environments
	Implementation Details

	Evaluation Results
	Hyperparameter Sensitivity
	Evaluation Returns
	Exploration using only Intrinsic Rewards
	Divergence Constraints

	Related Work
	Conclusion

	Benchmarking Multi-Agent Reinforcement Learning
	Multi-Agent Environments
	Repeated Matrix Games
	Multi-Agent Particle Environment
	StarCraft Multi-Agent Challenge
	Level-Based Foraging
	Multi-Robot Warehouse

	Evaluation
	Evaluation Protocol
	Parameter Sharing
	Hyperparameter Optimisation
	Computational Requirements
	Extended PyMARL

	Results
	Independent Learning
	Centralised Training Decentralised Execution
	Parameter Sharing

	Analysis
	Conclusion

	Experience Sharing for Multi-Agent Reinforcement Learning
	Shared Experience Actor-Critic
	Formal Derivation
	Experiments
	Results
	Analysis

	Shared Experience Deep Q-Networks
	Related Work
	Conclusion

	Ensemble Value Functions for Multi-Agent Exploration
	Ensemble Value Functions for Multi-Agent Exploration
	Experimental Setup
	Evaluation Results
	Analysis and Ablations
	Training Stability
	Exploration Policy
	Evaluation Policy
	Ensemble Size
	Ablations

	Related Work
	Conclusion

	Warehouse Logistics with Multi-Agent Reinforcement Learning
	Problem Setting
	Warehouse Simulators
	Dematic Person-to-Goods Simulator
	TA-RWARE Goods-to-Person Simulator

	Methodology
	Action masking
	Hierarchical MARL for Order-Picking

	Empirical Evaluation
	Algorithms
	Environment Details
	Results

	Related Work
	Conclusion

	Conclusion
	Directions for Future Work

	Decoupled Reinforcement Learning
	Hyperparameter Optimisation
	Evaluation Results
	Hyperparameter Sensitivity
	KL-Divergence Constraint Regularisation

	Multi-Agent Deep Reinforcement Learning Benchmark
	The EPyMARL Codebase
	Computational Cost
	SMAC Win-Rates
	Learning Curves in All Tasks
	Hyperparameter Optimisation
	Selected Hyperparameters

	Ensemble Value Functions for Multi-Agent Exploration
	Hyperparameter Optimisation
	Individual Task Evaluation Returns in Mixed-Objective Tasks
	Individual Task Evaluation Returns in Cooperative Tasks
	Level-Based Foraging
	Boulder-Push
	Multi-Robot Warehouse
	Multi-Agent Particle Environment

	Bibliography

