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Abstract

Multi-agent reinforcement learning has seen considerable achievements on a variety

of tasks. However, suboptimal conditions involving sparse feedback and partial ob-

servability, as frequently encountered in applications, remain a significant challenge.

In this thesis, we apply curiosity as exploration bonuses to such multi-agent systems

and analyse their impact on a variety of cooperative and competitive tasks. In addition,

we consider modified scenarios involving sparse rewards and partial observability to

evaluate the influence of curiosity on these challenges.

We apply the independent Q-learning and state-of-the-art multi-agent deep deter-

ministic policy gradient methods to these tasks with and without intrinsic rewards. Cu-

riosity is defined using pseudo-counts of observations or relying on models to predict

environment dynamics.

Our evaluation illustrates that intrinsic rewards can cause considerable instability

in training without benefiting exploration. This outcome can be observed on the orig-

inal tasks and against our expectation under partial observability, where curiosity is

unable to alleviate the introduced instability. However, curiosity leads to significantly

improved stability and converged performance when applied to policy-gradient rein-

forcement learning with sparse rewards. While the sparsity causes training of such

methods to be highly unstable, additional intrinsic rewards assist training and agents

show intended behaviour on most tasks.

This work contributes to understanding the impact of intrinsic rewards in challeng-

ing multi-agent reinforcement learning environments and will serve as a foundation for

further research to expand on.
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Chapter 1

Introduction

1.1 Motivation

Humans constantly interact with other people or machines to perform tasks. They

learn such interactive behaviour from a young age, largely relying on observation and

an intrinsic curiosity [Berlyne, 1965].

Multi-agent reinforcement learning (MARL) is concerned with such behaviour

learning of multiple agents. Throughout training, agents continuously interact with the

environment and receive feedback in the form of numeric rewards. While MARL re-

search has already led to successful applications, particularly in game-playing [Mnih

et al., 2015; OpenAI, 2018a; Silver et al., 2017; Vinyals et al., 2019], it still faces

considerable challenges under suboptimal conditions. Such conditions include partial

observability, under which agents only receive incomplete information about the envi-

ronment. Many autonomous systems operate under imperfect information, making this

challenge essential for future applicability of MARL. Another challenge often encoun-

tered is sparsity of rewards, i.e. agents do not receive constant, meaningful feedback,

but only get such rewards sparsely.

1.2 Overview

Solving tasks by learning the intended behaviour under such conditions requires exten-

sive exploration. In this context, exploration refers to the attempt of various strategies

to discover new promising behaviour. There are many possible approaches for effi-

cient exploration [Thrun, 1992]. In this dissertation, we apply curiosity [Schmidhuber,

1991a] to MARL, rewarding agents for discovering novel or poorly understood parts

1



Chapter 1. Introduction 2

of the environment. Agents are trained to compute these intrinsic rewards [Chentanez

et al., 2005] to motivate exploration and assist learning independent of environmental

rewards.

We apply three recent definitions of such intrinsic rewards to value-based and pol-

icy gradient MARL methods. Our research focuses on the application of curiosity in

MARL in general and its impact on exploration. The influence of decentralised curios-

ity, where each agent independently computes its intrinsic rewards, as well as applying

a joint curiosity model, is analysed. Our evaluation on the multi-agent particle environ-

ment considers the original cooperative and competitive tasks. Additionally, modified

variations of these tasks are used to analyse the impact of curiosity under partial ob-

servability and with sparse rewards.

We find that curiosity only introduces slight disturbance during training on the

original tasks. Surprisingly, the same can also be observed under partial observability,

where neither joint nor decentralised curiosity could assist exploration. However, we

find that curiosity leads to considerable improvements in training stability and con-

verged performance for policy gradient MARL during training with sparse rewards.

1.3 Outline

This dissertation is structured as follows. Chapter 2 introduces preliminary informa-

tion on MARL research and necessary formalisation. We describe applied baseline

approaches, the general concept of intrinsic reward and its application in reinforce-

ment learning. The third chapter explains our methodology involving the concrete

implementation of all algorithms including their network architecture and optimisa-

tion objectives. After highlighting these details, the independent and joint curiosity

definitions for MARL are compared and the training cycle is illustrated. In Chap-

ter 4, the experimental conditions of our evaluation, as well as the conducted tasks, are

explained. This also includes our modifications for partial observability and sparse re-

wards. Lastly, we propose future research topics building on top of our findings before

we conclude with final remarks on this project.

For reproducibility, we include implementation dependencies and a complete list

of parameters chosen for the evaluation in appendices A and B. For more illustrations

of the evaluation results, we include figures and tables in appendix C.



Chapter 2

Background

2.1 Multi-Agent Reinforcement Learning

MARL is a general framework for learning behaviour in multi-agent systems. It is the

extension of reinforcement learning (RL) which has led to various successful appli-

cations for single-agent tasks. In MARL, each agent is trained to learn a policy for

action-selection by repeatedly interacting with the environment and optimising their

policies. The objective of such training is to learn a policy that maximises future cu-

mulative rewards.

Due to its wide field of applications, MARL research becomes increasingly promi-

nent. Many autonomous tasks require multiple parties to interact with each other and

hence a framework for cooperative and competitive behaviour learning is required.

Despite its existing success in complex environments, e.g. the video games Dota

[OpenAI, 2018a] and StarCraft [Vinyals et al., 2019], there are still challenges that

have to be addressed. One of the essential dilemmas of RL and MARL in particular

is the balance of exploration and exploitation. Agents need to explore the environ-

ment to discover new behaviour to guarantee eventually finding the optimal policy.

However, this sacrifices short-term rewards, which could be achieved by greedily ex-

ploiting already existing knowledge. Such greedy exploitation simply follows the be-

haviour appearing most promising so far. This problem becomes increasingly complex

in MARL, as exploration does not just depend on the action choice of a single agent,

but all involved agents. In most tasks, it is desirable for exploration to be achieved

collaboratively rather than letting each agent explore independently, which ignores the

presence of other agents.

Another challenge of MARL is the credit-assignment problem concerned with

3
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identifying the responsible agents and actions for received rewards. The complex-

ity of this task is closely connected to the sparsity of rewards, i.e. the frequency in

which feedback is provided. If agents are continuously given meaningful feedback for

each of their actions, it becomes much easier to identify their impact. Imagine a team

of football players being rewarded for scoring goal. It is highly complex to identify

which individual actions of each player contributed towards the goal and if so to what

extent.

2.2 Markov Decision Process

Sequential decision-making problems, as solved by RL, are usually formalised as

Markov decision processes (MDPs) [Howard, 1964]. Formally an MDP is a tuple

(S ,A ,P ,R ,γ) with a set of states S , actions A and P : S ×A × S → [0,1] describes

the environment dynamics in the form of transition probabilities P (s,a,s′) of reaching

state s′ after applying action a in s. Similarly, R : S×A×S→R represents the reward

R (s,a,s′) for such a transition and γ denotes the discount factor to define the expected

return in Equation (2.1).

Figure 2.1: Agent-environment interaction in an MDP. Figure taken from Sutton and

Barto [2018]

Figure 2.1 illustrates the general control loop of MDP tasks. The agent repeatedly

receives the current state st and reward rt for the previous decision and decides its

action at based on the inputs. st and at together determine the next state st+1 as well

as the new reward rt+1 to conclude the cycle. The loop generally assumes the Markov

property, i.e. future states and rewards only depend on the last state and action. Hence

optimal decisions can be made solely based on the current state.

The goal of any RL agent in these tasks is to learn a policy π : S → A that decides

which actions to take based on the current state or observation. Such a policy is trained
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to maximise the expected (discounted) return Gt , i.e. the discounted sum of future

rewards:

Gt = rt+1 + γ rt+2 + γ
2 rt+3 + · · ·=

∞

∑
k=0

γ
k rt+k+1 (2.1)

The discount factor γ ∈ [0,1) is introduced to account for continuous tasks without

terminal time step, balancing short- and long-term rewards.

2.2.1 Partially Observable Stochastic Game

Usually, it is unrealistic to assume that agents have full information about the state of

the environment. Imagine e.g. the game of Poker. Each player only has information

about open cards and its own hand but is unable to observe other players’ cards. To

represent such tasks involving multiple agents, partially observable stochastic games

(POSGs) are introduced [Hansen et al., 2004]. Similar to MDPs, these problems can be

described as tuples (I ,S ,A ,Ω,P ,O,R ,γ) where S , P and γ are defined as for a simple

MDP. I = {1, ...,N} is a set of agents, A = A1× ...×AN denotes the joint action set.

Similarly, Ω = Ω1× ...×ΩN is the set of joint observations. Instead of receiving in-

formation about the full state, agents receive these observations based on the transition

function O : S ×A×Ω→ [0,1] with O(s,a,o) representing the probability to receive

a certain observation o when joint action a is applied in state s. Each agent receives

individual rewards based on its reward function Ri : S ×A×S →R. For collaborative

tasks, these reward functions will often be identical.

2.3 Reinforcement Learning Methods

2.3.1 Foundation

There are multiple approaches in RL to solve MDPs by learning the optimal policy π∗

that maximises the expected return

Eπ∗ [Gt | at = π
∗(st)] = max

π
Eπ [Gt | at = π(st)] (2.2)

This expected return is often formalised as the state-value function Vπ(s) of a policy



Chapter 2. Background 6

describing the expected return by following the policy in state s

Vπ(s) = Eπ [Gt | st = s] (2.3)

= Eπ [rt + γ Gt+1 | st = s] (2.4)

= ∑
a

π(a | s)∑
s′

P(s,a,s′)
[
R(s,a,s′)+ γ Vπ(s′)

]
(2.5)

Equation (2.5) represents the so-called recursive Bellman equation. Similarly, an

action-value function Qπ(s,a) can be defined as the expected reward after applying

action a in s

Qπ(s,a) = Eπ [Gt | st = s,at = a] (2.6)

= ∑
s′

P(s,a,s′)
[
R(s,a,s′)+ γ Vπ(s′)

]
(2.7)

= ∑
s′

P(s,a,s′)

[
R(s,a,s′)+ γ ∑

a′
π(a′ | s′) Qπ(s′,a′)

]
(2.8)

These equations serve as the foundation for temporal-difference (TD) learning

[Sutton, 1988] methods, which are iteratively updating value function approximations

after each step taken in the environment

V (s) =V (s)+α
(
R(s,a,s′)+ γ V (s′)−V (s)

)
(2.9)

where α is a predetermined step-size referred to as learning rate.

2.3.2 Q-Learning

Q-learning [Watkins and Dayan, 1992] is the most common TD algorithm and aims

to compute an action-value function approximation using off-policy updates, i.e. a′ is

chosen without considering the followed policy π.

Q(s,a) = Q(s,a)+α(R(s,a)+ γ max
a′

Q(s′,a′)−Q(s,a)) (2.10)

2.3.2.1 Deep Q-Learning

However, such tabular value-function approaches do not scale to tasks with high-

dimensional state-spaces. It can not be expected that the same state will be encountered

many times, hence generalisation is essential to learn a representative value function.

This difficulty can be addressed using neural networks. Such networks serve as pow-

erful function approximations and have arguably been one of the most influential ad-

vances in AI [LeCun et al., 2015].



Chapter 2. Background 7

Deep Q-networks (DQNs) reached human-level performance on multiple Atari

games [Mnih et al., 2013, 2015]. The approach trains a network to approximate the

Q-function by minimising the following loss with respect to network parameters θ

L(θ) = Es,a,r,s′∼D

[
(r+ γ max

a′
Q(s′,a′; θ̄)−Q(s,a;θ))2

]
(2.11)

where θ̄ are delayed parameters which are periodically updated towards θ. Such a

target network structure assists in stabilising training. Furthermore, the introduction of

a replay memory [Lin, 1992] D is crucial for training. It allows to efficiently sample

large batches of (uncorrelated) experience steps (s,a,r,s′) to use for optimisation.

2.3.2.2 Independent Q-Learning

Independent Q-learning (IQL) [Tan, 1993] is the logical extension of Q-learning for

multi-agent systems. Each agent is simply maintaining its Q-function conditioned

on its actions and state or observations in case of partial observability. Thus, agents

(wrongly) assume that the environment remains stationary despite the presence of fur-

ther actors. While this leads to suboptimal performance in cooperative games [Matignon

et al., 2012], the approach remains a simple MARL baseline, which can easily be gen-

eralised using DQNs.

2.3.3 Policy Gradient Methods

Value function approaches are widely used in RL, but they are restricted to finite and

discrete action sets. Policy gradient methods aim to overcome this limitation by di-

rectly computing a policy without intermediate value function. This makes those ap-

proaches better suited for environments of many or continuous actions, but often sac-

rifice convergence speed and stability [Duan et al., 2016]. Policy parameters θ are

optimised using the gradient of a score function J. Such a function is approximately

sampled based on the policy gradient theorem [Sutton et al., 2000]: For any differen-

tiable policy π, its gradient ∇J(θ) can be written as

∇J(θ) = ∑
s

dπ(s)∑
a

Qπ(s,a) ∇π(a | s;θ) (2.12)

= Eπ [Qπ(st ,at) ∇ lnπ(at | st ;θ)] (2.13)

where dπ(s) represents the on-policy distribution of states encountered when following

π. Based on this theorem, θ can be updated as below

θt+1 = θt +α Qπ(st ,at) ∇ lnπ(at | st ;θt) (2.14)
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where Qπ(st ,at) is approximated by e.g. the total return during an episode as used by

REINFORCE [Williams, 1992].

Actor-critic methods [Konda and Tsitsiklis, 2000] use a value function approxima-

tion V̂ , the critic, to update the policy referred to as the actor.

θt+1 = θt +α
(
rt+1 + γ V̂ (st+1;w)−V̂ (st ;w)

)
∇ lnπ(at | st ;θt) (2.15)

While the critic and actor both require optimisation, actor-critic algorithms proved

to be efficient and often more stable than individual value function or policy approaches

[Mnih et al., 2016].

2.3.3.1 Multi-Agent Deep Deterministic Policy Gradient

Multi-agent deep deterministic policy gradient (MADDPG) [Lowe et al., 2017] is an

extension of the widely used deep deterministic policy gradient (DDPG) [Lillicrap

et al., 2015] algorithm for multi-agent systems. It trains a critic and actor network for

each agent with the general architecture outlined in Figure 2.2.

Figure 2.2: Outline of the MADDPG architecture. Each agent maintains its policy net-

work πi to choose actions based on its individual observations oi. Joint observations

and actions are the inputs for critic networks, Qi. Figure taken from Lowe et al. [2017]

The critics are conditioned on the joint observations and actions for centralised

training. However, execution remains decentralised as only the policy networks are

required. These can be applied independently for each agent using their own observa-

tions as input.
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Formally, each agent is training its policy πi with parameters θi using the respective

gradient

∇J(θi) = Eo,ai∼πi [Qi(o,a1, ...,aN) ∇ lnπi(ai | oi;θi)] (2.16)

where Qi corresponds to the centralised critic of agent i. Its input consists of the joint

observation o = (o1, ...,oN) ∈ Ω as well as the chosen actions of all agents a1, ...,aN .

The policy input solely consists of the individual observation oi to choose action ai.

Centralised critics for deterministic action policies are optimised with respect to the

following loss function

L(θi) = Eo,a,r,o′∼D

[(
ri + γ Q̄i(o′,a′1, ...,a

′
N) |a′j=µ̄ j(o j) −Qi(o,a1, ...,aN)

)2
]

(2.17)

where µ j corresponds to the deterministic policy of agent j and µ̄ j, Q̄ j represent the tar-

get policy and critic respectively with delayed parameters. In practice, tuples (o,a,r,o′)

of joint observations of current o and next observation o′ as well as chosen actions a

and received rewards r will be stored in an experience replay D for efficient training.

MADDPG was shown to be a powerful method for cooperative and competitive

behaviour learning alike and led to state-of-the-art performance on the multi-agent

particle environment1 [Lowe et al., 2017].

2.4 Intrinsic Rewards

Intrinsic motivation is a widely researched area in psychology concerned with activities

motivated by their inherent satisfaction rather than their consequences [Ryan and Deci,

2000]. Such motivation leads to exploratory behaviour, which can be observed in many

organisms [White, 1959], particularly human infants [Berlyne, 1965].

Inspired by these concepts, a variety of computational methods have been pro-

posed to replicate curiosity for efficient exploration in RL [Barto, 2013] and robotics

[Oudeyer and Kaplan, 2009; Oudeyer et al., 2008, 2007]. These exploration bonuses

are a form of reward shaping, trying to compute additional rewards to support training

[Devlin and Kudenko, 2012]. While some reward shaping has been applied to multi-

agent systems [Babes et al., 2008], curiosity has largely been restricted to single-agent

RL. After elaborating on existing ideas in RL, we will briefly refer to the limited re-

search done on intrinsic rewards for MARL.
1More information on this environment will be provided in Section 4.1.1 as it serves as our primary

evaluation testbed.
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2.4.1 Count-based Curiosity

Most definitions of intrinsic reward as exploration incentives are based on uncertainty

in the environment. One way of estimating such uncertainty is by counting observa-

tions, or observation-action pairs. The more frequent parts of the environment are vis-

ited, the less novel and hence interesting they are for exploration. Therefore, the agent

is rewarded inverse proportionally to the count of encountered observations. This ap-

proach can easily be applied to small, discrete state-spaces, but it requires sophisticated

methods to deal with continuous or large state spaces. In such environments, observa-

tions are often only encountered once or not at all. Thus, generalisation, as for value

function approaches, is necessary.

Bellemare et al. [2016] overcome this challenge by introducing pseudo-counts for

observation-action pairs. These are derived using a density model predicting the recod-

ing probabilities of states. Pseudo-counts improved exploration and thereby learning

progress considerably in multiple Atari games [Bellemare et al., 2013], most notably

the exploration-heavy game Montezuma’s Revenge. The approach was refined with

an advanced density model for visual observations [Ostrovski et al., 2017] to improve

stability and learning speed further.

Tang et al. [2017] propose generalising by computing approximate locally-sensitive

hash-values of observations. These are used to maintain hash tables of counts as a

density model and reward the agent as previously inverse proportional to the counts.

Locality-sensitive hashing is used to group observations based on similarity metrics

[Andoni and Indyk, 2008]. The paper specifically applies the SimHash [Charikar,

2002] function measuring angular distance based on the sign of a randomised map-

ping. This makes the approach computationally efficient and comparably simple.

2.4.2 Prediction-based Curiosity

Instead of counting observations, environment uncertainty can also be estimated using

predictions on environment dynamics. The impact of actions on the environment is

predicted and agents are rewarded for their prediction error to reduce uncertainty over

time. Schmidhuber [1991b] introduced such a curiosity bonus and defined the intrinsic

reward as the discrepancy between observed and predicted observation.

Schmidhuber also identified the problem of stochastic observations, which due to

their randomness introduce unpredictability. The proposed solution of boredom aimed

to diminish the curiosity rewards for observations not considered “learnable”. How-
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ot

at

ôt+1Model

Figure 2.3: Most prediction-based curiosity approaches are constructing models of en-

vironment dynamics to predict the upcoming observation ot+1 using current observation

ot and chosen action at .

ever, it remains a major challenge to efficiently identify such observations.

Stadie et al. [2015] constructed a similar network, encoding observations using an

autoencoder network [Hinton and Salakhutdinov, 2006], which was optimised online

during RL training. Such efficient representations enabled environment prediction in

high-dimensional environments and led to considerable exploration in Atari games.

2.4.2.1 Intrinsic Curiosity Module

Pathak et al. [2017] propose the intrinsic curiosity module (ICM) to learn efficient

observation representations. They suggested training a network to predict the applied

action given original and next observation representations.

Figure 2.4: The ICM learns feature representation φ for states through the inverse

model predicting applied action at . A prediction φ̂(st+1) of the upcoming state repre-

sentation is computed using the forward model. Figure taken from Pathak et al. [2017]
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Through such self-supervised training, the network is incentivised to only include

features in the observation representations, which affect the predicted action or are

potentially affected by it. As indicated by Figure 2.4, intrinsic rewards are defined as

the difference in predicted and encountered observation representations. Due to the

trained representation network, the approach led to considerable progress in domains

of high-dimensional input, impressively even in the absence of extrinsic rewards or

presence of noise occupying parts of observations.

2.4.2.2 Random Network Distillation

While ICM has been highly effective in some complex tasks, it suffers from the so-

called “noisy-TV” problem [Burda et al., 2018a]. Noise, which is integrated in the

environment, consistently leads to high curiosity and disturbs training. Random net-

work distillation (RND) [Burda et al., 2018b] has been proposed to deal with such

stochastic observations. Other than previous prediction-based curiosity concepts, it

only attempts to compute observation representations without considering actions, as

shown in Figure 2.5. Observation novelty is estimated based on the distance of com-

puted representations of a prediction and a randomly initialised, fixed target network.

Hence, the prediction network is trained to mirror the target representations.

Figure 2.5: Outline of the feature prediction computed by RND. The trained predictor

network computes its predicted representation solely relying on observation oi+1. Fig-

ure taken from OpenAI [2018b]

Due to the lack of consideration of actions, the approach is invariant to noisy obser-

vations and computationally inexpensive compared to ICM. However, it assumes poor

generalisation among observations to avoid premature decay of curiosity.

2.4.3 Intrinsic Rewards in Multi-Agent Reinforcement Learning

There have been few attempts of applying intrinsic rewards in MARL, presumably due

to the increased challenge in multi-agent systems. Non-stationarity makes environment
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predictions largely unreliable and count-based approaches face increased scalability

problems due to the large joint action- and observation-space.

However recently, novel approaches to apply curiosity as exploration incentives

to MARL have been proposed. Independent centrally-assisted Q-learning (ICQL)

[Böhmer et al., 2019] introduces a centralised, intrinsically motivated agent to IQL

to stabilise the impact of such exploration incentives. This agent is only applied during

training and shares a replay buffer with decentralised IQL agents, which are trained

using extrinsic reward alone. Through this framework, the unreliable influences of

potentially misleading intrinsic rewards can be avoided while making use of its explo-

ration incentives.

Lastly, Iqbal and Sha [2019] define an ensemble of intrinsic rewards based on sim-

ple count-based novelty bonuses. Each agent maintains such a novelty function 1
Nζ

where N is a count of observation occurrences and ζ represents a decay rate. Intrinsic

rewards are defined as varying combinations of all agents’ novelty functions. They are

e.g. formulated as the minimum or average over all novelties. For each agent, a soft

actor-critic policy [Haarnoja et al., 2018] is simultaneously trained for every reward

by using a shared replay buffer. Additionally, a high-level selector policy is trained to

dynamically decide which policy should be applied for a given task. Such a decision

is conducted for each agent at the beginning of a new episode. This dynamic selection

consistently led to performance comparable or better than the best individual intrinsic

reward approach for any task and eliminates the need for preselecting these bonuses.
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Methodology

The primary objective of this project is to evaluate the impact of curiosity as explo-

ration incentives for MARL in varying competitive and cooperative tasks. Chapter 2 al-

ready introduced the challenge of this approach and possible solutions were reviewed.

In this chapter, the applied techniques as well as their novel integration into the MARL

framework will be presented before the training cycle is outlined.

3.1 Baseline Algorithms

In order to evaluate the influence of curiosity on MARL, we consider value-based

and policy gradient methods as baselines. Independent Q-learning (IQL) [Tan, 1993],

briefly introduced in Section 2.3.2.2, is a simple and commonly used value-based algo-

rithm. It aims to learn individual action-value functions for each agent, which are used

for action selection. As the policy gradient approach, multi-agent deep deterministic

policy gradient (MADDPG) [Lowe et al., 2017] will be the evaluated. The multi-agent

actor-critic method, referred to in Section 2.3.3.1, reached state-of-the-art performance

on our baseline evaluation tasks. One of the main advantages of MADDPG is its flex-

ibility to be applied to competitive and collaborative tasks.

In the following subsections, we will elaborate on our implementations of these

baseline algorithms. Let do
i be the dimensionality of a single observation and da

i of an

action for agent i . do and da are used to denote the dimensionality of joint observations

and actions respectively, hence

do =
N

∑
i=1

do
i (3.1) da =

N

∑
i=1

da
i (3.2)

where N is the number of agents. Similarly, Na
i denotes the number of possible

14
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actions for agent i (in discrete action spaces).

3.1.1 Independent Q-Learning

IQL is implemented using deep Q-networks (DQNs) [Mnih et al., 2013, 2015]. Each

agent maintains its own DQN, computing the action-values Qi(oi,ai) for each action

ai given its input observation oi. The initial input represents the observation of fixed

dimensionality do
i and two intermediate layers compute hidden representations of size

dh. Both hidden layers apply the rectified linear activation function ReLU f (x) =

max(x,0) for non-linearity. The final output layer computes a scalar value estimate for

each possible action of the respective agent as shown in Figure 3.1.

Dimensionality

oi1

...

oido
i

do
i

...

...

dh

...

...

dh

Qi(oi,ai1)

...

Qi(oi,aiNa
i
)

Na
i

Figure 3.1: Illustration of DQN architecture for agent i with two intermediate layers of

hidden representation size dh and ReLU activation function.

These networks are trained to estimate Q-targets (Equation (3.3)) by minimising

the mean-squared error (MSE) over minibatches of experience tuples (o,a,r,o′) as

shown in Equation (3.4). Each DQN is optimised individually on experience including

only the agent’s own observations oi,o′i, action ai and reward ri.

yi = ri + γ max
a′i

Q̄i(o′i,a
′
i; θ̄i) (3.3)

L(θi) = Eoi,ai,ri,o′i∼D

[
(Qi(oi,ai;θi)− yi)

2
]

(3.4)

Each target value yi of agent i is computed using a target network Q̄i with delayed

parameters θ̄i.

To maintain exploration during training, every agent is using an ε-greedy policy.

Such policies are frequently applied and select the greedy action, i.e. the action ai =
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argmaxaQi(oi,a) maximising the value function for the current observation oi, with

probability 1− ε. With probability ε, a random action is selected instead. This way,

the agent constantly explores and ε is slowly decayed during training to converge to

an optimal policy. It should be noted that such a policy and the architecture of DQN

assume a discrete action space.

3.1.2 Multi-Agent Deep Deterministic Policy Gradient

For MADDPG, each agent is training two separate networks. The actor and critic are

both defined as neural networks with three layers. While the actor policy network re-

ceives individual observations of size do
i as input, the critic receives joint observations

and actions of total dimensionality do +da. As for DQNs, both intermediate represen-

tations have dimensionality dh and the ReLU activation function is applied. The critic

output is a single scalar value representing the Q-value of the joint action given the

underlying state of the observations for agent i. Both architectures are illustrated in

Figures 3.2 and 3.3.

Dimensionality

oi

...

oN

a1

...

aN

do+da

...

...

dh

...

...

dh

Qi(o,a)

1

Figure 3.2: Illustration of MADDPG critic architecture for agent i with two intermediate

layers of hidden representation size dh and ReLU activation function. The action-value

output is over the joint observations o = (o1, ...,oN) and actions a = (a1, ...,aN).

Optimisation of the critic is done as for IQL, minimising an MSE loss to estimate

Q-targets. However, instead of maximising over Q-values, target policies π̄ are used for

action selection given the next observations o′. The critic is receiving joint action and

observation as its input to compute the respective Q-value for agent i. In the following

equations, θ
Q
i and θπ

i denote the critic and actor parameters of agent i respectively.
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yi = ri + γ Q̄i(o′1, ...,o
′
N ,a
′
1, ...,a

′
N ; θ̄

Q
i )

∣∣∣∣
a′k=πk(o′k;θ̄π

k )

(3.5)

L(θQ
i ) = Eo,a,r,o′∼D

[(
Qi(o1, ...,oN ,a1, ...,aN ;θ

Q
i )− yi

)2
]

(3.6)

Dimensionality

oi1

...

oido
i

do
i

...

...

dh

...

...

dh

ai1

...

aiNa
i

Na
i ×da

i

Figure 3.3: Illustration of MADDPG actor architecture for agent i with two intermediate

layers of hidden representation size dh and ReLU activation function.

Actor networks represent policies and hence are computing respective actions of

dimensionality da
i directly. They are trained to minimise the negative action-value

represented by the following loss.

L(θπ
i ) = Eo,a,r,o′∼D

[
−Qi

(
o1, ...,oN ,a1, ..., âi, ...,aN ;θ

Q
i

)]∣∣∣∣
âi=πi(oi;θπ

i )

(3.7)

Exploration for continuous action spaces uses decaying Gaussian noise, which is

added to the policy output as suggested by Lowe et al. [2017]. In the case of discrete

actions, a gumbel-softmax distribution [Jang et al., 2016] is applied to obtain a dif-

ferentiable policy for optimisation. The implementation is based on the open-source

project of Shariq Iqbal1.

3.2 Curiosity Approaches

In Section 2.4, the idea of intrinsic rewards as exploration incentives has been pre-

sented. This work extends the MARL baselines with a general framework to in-

clude such intrinsic rewards and implements three different approaches for evaluation.
1The MADDPG open-source implementation using PyTorch is available under https://github.

com/shariqiqbal2810/maddpg-pytorch.

https://github.com/shariqiqbal2810/maddpg-pytorch
https://github.com/shariqiqbal2810/maddpg-pytorch
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Each curiosity approach computes a reward signal rI based on experience samples

(o,a,rE ,o′) where rE denotes the usual, extrinsic reward provided by the environment.

Whenever curiosity is applied, the reward signal used during training of DQNs or

MADDPG critics is defined as the following sum

r = rE +η rI (3.8)

where η denotes a weighting factor. In the absence of intrinsic rewards, the reward is

simply the extrinsic reward r = rE .

3.2.1 Hash-based counting

The first considered exploration bonus is the count-based curiosity of Tang et al. [2017],

referred to in Section 2.4.1. Our implementation is largely based on existing open-

source code2 and follows the proposed approach using the SimHash function [Charikar,

2002]. A projection matrix A ∈ Rdo×dk
for observation dimension do and key dimen-

sionality dk is randomly initialised from a standard normal distribution N (0,1). A is

used to compute observation representations as follows

φ(o) = sgn(A o) (3.9)

where sgn denotes the sign function. During training, each encountered observation

is encoded using φ and its representation counter n(φ(o)) incremented. The intrinsic

reward is defined as

rI =
1

max
(

1,δ ·
√

n(φ(o))
) (3.10)

where δ denotes a decay factor.

3.2.2 Intrinsic Curiosity Module

As one of two prediction-based curiosity approaches, we implement the intrinsic cu-

riosity module (ICM) [Pathak et al., 2017] as presented in Section 2.4.2.1. The feature

representation φ(o) of observation o is computed using a feedforward neural network

with three layers. Intermediate layers compute a representation of hidden curiosity

size dhc and apply the ReLU activation function. The final representation has chosen

dimensionality dφ.

2The open-source implementation of hash-based counting as an exploration bonus is available under
https://github.com/openai/EPG/blob/master/epg/exploration.py.

https://github.com/openai/EPG/blob/master/epg/exploration.py
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The inverse model, as depicted in Figure 2.4, predicts the applied action at given

representations φ(ot) and φ(ot+1). The initial layer computes a hidden representation

of size dhc , applies ReLU for nonlinearity and the last layer computes the action repre-

sentation.

The forward model predicts φ(ot+1) given φ(ot) and at . It similarly consists of

two layers, where the first computes a dhc-sized representation and applies the ReLU

function. The last layer simply computes a representation of size dφ.

Let θφ denote the parameters of the representation model while θI and θF are the

parameters of inverse and forward model respectively. The forward model is trained to

minimise the following loss of its predicted representation

L(θφ,θF) =
1
2
Eo,a,r,o′∼D

[(
φ(o′;θ

φ

i )− φ̂(o′;θ
F)
)2
]

(3.11)

where φ̂(o′;θF)= f (φ(o;θφ),a;θF) is the predicted representation of the forward model.

Training of the inverse model depends on the action space. For discrete actions, a

cross-entropy loss is minimised

L(θφ,θI) = Eo,a,r,o′∼D

[
−log

(
exp(â[a])

∑ j exp(â[ j])

)]
(3.12)

where â = i(φ(o;θφ),φ(o′;θφ);θI) is the prediction of the applied action by the inverse

model and a represents the truly applied, discrete action. For continuous actions, a

MSE loss of â and a is minimised instead.

3.2.3 Random Network Distillation

Random network distillation (RND) [Burda et al., 2018b] is the last applied form of

curiosity in this project. Its networks are essentially identical to the state representation

model φ(o;θφ) of ICM with three layers computing dhc intermediate representations

with ReLU and output size dφ. As already explained in Section 2.4.2.2, a fixed, target

network φ̄(o;θφ̄) is initialised with equal architecture. However, its parameters are

fixed and the representation model is trained to mimic its outputs. This is achieved by

minimising a MSE loss.

L(θφ) = Eo∼D

[(
φ(o;θ

φ)− φ̄(o;θ
φ̄)
)2
]

(3.13)

3.2.4 Independent and Joint Curiosity

All curiosity approaches will be used to compute an intrinsic reward as shown in Equa-

tion (3.8). However, in multi-agent systems, there are two major ways how such an
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exploration bonus rI can be computed. Either, each agent individually calculates its

own exploration bonus or a single curiosity model is constructed for all agents to use

jointly. In the first case, each agent maintains its own curiosity prediction network or

count-table respectively. This is used to compute the intrinsic reward rI
i using its ob-

servation oi (and in the case of ICM its action ai and next observation o′i). If curiosity

is applied jointly, then a single curiosity model is constructed to compute exploration

bonuses based on the joint observations o, o′ and actions a.

It should be noted that especially for prediction-based curiosity approaches, such

joint application appears preferable. Predicting the dynamics of the environment, as

especially ICM aims to learn, appears very challenging solely based on individual ob-

servations and actions. In most MARL tasks, not just the individual action, but also

actions of other agents influence the environmental state and impact obtained observa-

tions.

In this project, both approaches are considered and their respective impact on

MARL will be evaluated.

3.3 Training

The detailed training cycle for MARL with curiosity is illustrated in Algorithm 1 be-

low. It uses an episodic replay memory D of capacity ND to store and sample mini-

batches for efficient training.

For generalisation, we simply annotate the MARL algorithm parameters of each

agent with θi and the parameters of its applied curiosity approach with θC
i . Note that for

IQL, θi represents the parameters of agent i’s DQN, while for MADDPG θi = {θQ
i ,θ

π
i }

it represents the critic and actor parameters. Similarly, the curiosity parameters θC
i

represent Ai, {θφ

i ,θ
F
i ,θ

I
i} or {θφ

i ,θ
φ̄

i } respectively. If curiosity is applied jointly, then

θC
i = θC for each agent i = 1, ...,N.

After the initialisation, Nepisodes episodes are executed. Each episode ends either

when a terminal state (done) or a maximum number of steps per episode, Nmax-episode-length,

is reached. During each episode, the agents repeatedly select actions a = (a1, ...,aN)

based on their policies πi given their current, individual observation oi. The applied

policies πi are ε-greedy policies for IQL with respect to the learned Q-function and the

actor policies for MADDPG agents. The observed rewards r, terminal signal done and

next observation o′ are stored together with o as an experience tuple in D .

Every Nupdate-freq steps, parameters are optimised on a randomly sampled minibatch
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Algorithm 1 Training Cycle for MARL with Curiosity
1: Initialise environment

2: Initialise replay memory D with capacity ND

3: Initialise MARL algorithm networks with random parameters θi

4: Initialise curiosity model with random parameters θC
i

5:

6: t ← 0

7: for episode = 1, ...,Nepisodes do
8: o← reset environment and get initial observation

9: done← False

10: episode length← 0

11: while not done and episode length < Nmax-episode-length do
12: a← Select actions according to agent policies πi for oi

13: r, done, o′← Execute a and observe r, done and o′

14: Store (o,a,r,o′) in D
15: if t mod Nupdate-freq = 0 and |D| ≥ Nbatch-size then
16: (oB,aB,rB,o′B)← Sample batch of Nbatch-size experience steps from D
17: TRAIN(oB,aB,rB,o′B) . Train networks

18: end if
19: t ← t +1

20: episode length← episode length+1

21: o← o′

22: end while
23: end for
24:

25: function TRAIN(o,a,r,o′)

26: for agent i = 1, ...,N do
27: Update parameters θi with gradient descent step minimising L(θi)

28: Update parameters θC
i with gradient descent step minimising L(θC

i )

29: θ̄i← (1− τ)θ̄i + τθi . Soft target network updates

30: end for
31: end function
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of size Nbatch-size from D . Optimisation of the curiosity and MARL algorithm param-

eters with respect to their losses is achieved as described in the previous sections.

Each parameter optimisation is executed using the Adam gradient descent optimiser

[Kingma and Ba, 2014]. For the MARL algorithm parameters θi, batch normalisation

[Ioffe and Szegedy, 2015] is additionally used on each input minibatch to stabilise

training. After parameter optimisation for each agent, we always execute a soft update

of the target networks with delayed parameters θ̄i using step-size τ.

3.3.1 Curiosity Weighting and Decay

Lastly, it should be noted that the weighting of intrinsic rewards with η as well as

their learning rate for optimisation of RND and ICM are crucial parameters for our

approach. It is challenging to choose these parameters, because they are highly task-

specific. If the intrinsic rewards are too large, then the agent is solely incentivised to

explore without learning the intended behaviour. Otherwise, if η is chosen too small

for the task, then the curiosity will have no impact at all. Likewise, a large learning

rate determines the decay of curiosity which can cause exploration to become over-

whelming or ineffective. These challenges will be addressed as part of our evaluation

and proposed future work in Section 5.1.
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Evaluation

In order to evaluate the impact of curiosity on MARL, we conduct experiments using

the multi-agent particle environment (MAPE) proposed by Lowe et al. [2017]. It in-

cludes collaborative and competitive tasks. We apply our described baseline algorithms

as well as agents served with additional curiosity following the methods of Section 3.2.

In addition to evaluating these approaches on the plain tasks of the environment,

the impact of partial observability and sparse rewards will be evaluated.

4.1 Experimental Setup

4.1.1 Multi-Agent Particle Environment

The MAPE contains multiple tasks for MARL. It is built on top of the RL environment

toolkit Gym [Brockman et al., 2016] and is publicly available1.

All tasks involve particles and landmarks in a continuous two-dimensional envi-

ronment. Observations are provided as high-level features rather than visual frames

and agents are continuously receiving informative reward signals. The action space

for all tasks and agents are discrete, such that IQL can be employed. In the following

section, all applied tasks will be summarised.

4.1.1.1 Cooperative communication

The cooperative communication task requires the collaboration of two agents to iden-

tify a goal among three possible landmarks and move towards it. While one agent is

1Environment available under https://github.com/openai/multiagent-particle-envs

23

https://github.com/openai/multiagent-particle-envs
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Figure 4.1: Rendering of cooperative communication (Left) and cooperative navigation

(Right) environments. (Left) The speaker agent (grey) communicates the goal landmark

colour to the moving listener agent (larger red entity). (Right) The agents (blue) have to

move to the landmarks (black) while avoiding collision.

unable to move but receives information about the goal, the listening agent has to reach

the communicated goal landmark. Figure 4.1 (Left) visualises the task.

Observation space The listener agent receives its velocity, relative landmark posi-

tions and the communication of the speaking agent as observations. Meanwhile,

the speaker agent only observes the colour of the goal landmark as three numeric

values.

Action space The listener agent has the usual action space for the MAPE including

five discrete actions corresponding to no movement as well as four directional

movements (right, left, up, down). In the cooperative communication task, the

speaker agent chooses between three discrete actions to communicate the goal

landmark to the mobile agent.

Reward Both agents receive the same reward representing the negative squared Eu-

clidean distance of the moving agent towards the goal landmark.

4.1.1.2 Cooperative Navigation

The cooperative navigation task involves three agents moving to landmarks while

avoiding collisions with each other. The environment is shown in Figure 4.1 (Right).

Observation space All agents receive their current velocity, position, relative land-

mark and agent positions as their input. Additionally, the observations also in-
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clude communications. However, agents are not allowed to communicate during

this task.

Action space The discrete action space for each agent involves the same five move-

ment actions used by the listening agent in the collaborative communication task:

standing still, moving right, left, up and down.

Reward Each agent receives the same reward signal. For each landmark, the negative

minimum distance to any agent is computed and summed up. Additionally, any

collisions of agents are punished with a negative reward of −1.

4.1.1.3 Physical deception

The physical deception task is one of the competitive tasks. Two collaborating agents

have to move towards a marked goal landmark while avoiding another adversary agent

from recognising and reaching it as well. This has to be achieved by moving towards

both existing landmarks, such that the adversary agent is unable to recognise which

landmark is the true goal location. An illustration can be found in Figure 4.2 (Left).

Observation space The cooperative agents receive their relative goal position, rela-

tive position to other landmarks and agents. While relative landmark and agent

positions are also provided to the adversary agent, it gets no information about

the goal landmark.

Action space The action space for each agent again involves four discrete directional

movement actions and an action to stand still.

Reward Cooperative agents receive rewards based on their negative minimum dis-

tance to the goal. Additionally, the reward includes a positive term for the dis-

tance of the adversary to the goal landmark to punish agents for letting the ad-

versary close to the landmark. Meanwhile, the adversary receives its negative

goal distance as rewards.

4.1.1.4 Predator-Prey

The last task is also of competitive nature. In the predator-prey environment, three

adversary agents aim to catch an individual, faster agent. Two obstacle landmarks are

placed in the environment for both teams to exploit, as seen in Figure 4.2 (Right).
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Figure 4.2: Rendering of physical deception (Left) and predator-prey (Right) environ-

ments. (Left) The collaborating agents (blue) have to move to the goal landmark (green)

while deceiving the adversary agent (red). (Right) The adversary agents (red) aim to

catch the faster fleeing agent (green).

Observation space The fleeing agent receives its velocity, position and relative land-

mark and agent positions. The adversary agents additionally get information

about the velocity of the fleeing green agent.

Action space All agents decide among the identical five discrete movement actions as

for previous tasks.

Reward The fleeing agent is punished for any collisions with adversary agents and

leaving the visualised area of the screen (to force it to stay in this part of the

environment). Adversary agents on the other side are collectively rewarded if

they collide with the individual agent.

4.1.2 Modified Tasks

4.1.2.1 Partial Observability

Curiosity has the primary objective of incentivising targeted exploration in novel parts

of the environment. Such exploration is primarily required in tasks which restrict

the observation and hence knowledge of agents about their environment. Therefore,

we implement modified versions of all presented tasks involving partial observabil-

ity2. This is achieved by limiting agents’ field of view. They only receive landmark

and agent positions as well as velocities for entities that are in a predefined radius of

dpartial-obs around their location. Obscured observation parts are replaced with 0-entries

2Our modified MAPE for partial-observability (and noise) is available under https://github.
com/LukasSchaefer/multiagent-particle-envs.

https://github.com/LukasSchaefer/multiagent-particle-envs
https://github.com/LukasSchaefer/multiagent-particle-envs
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Figure 4.3: Rendering of partially observable cooperative communication (left) and

predator-prey (right) task indicating the viewing field of the listener (red) and fleeing

(green) agent respectively for dpartial-obs = 0.5.

to maintain dimensionality. The only exception is the speaking agent of the coopera-

tive communication. It always receives the goal colour as its input due to its inability

to move.

4.1.2.2 Sparse Rewards

Besides partial observability, we also expect curiosity to impact performance in tasks

with only sparse rewards. Such feedback is often insufficient to learn intended be-

haviour or considerably slows down training. Hence, we conduct experiments for each

task with sparse rewards. When sparse rewards are applied, agents only receive non-

zero rewards every Nsparse-freq steps. The provided rewards are computed as the average

extrinsic feedback agents would have received during these iterations.

4.1.3 Configurations

All baseline algorithms are evaluated on each task and their partially observable coun-

terpart with and without the three curiosity approaches. Additionally, we employ

all configurations using sparse rewards. Every definition of curiosity will be applied

jointly as well as independently for all agents.

Training is executed over 25,000 episodes with (up to) 25 steps each. Every 100

steps, models are optimised and five evaluation episodes are executed to track aver-

age rewards obtained without exploration. For partial observability, we use a visibility

radius of dpartial-obs = 0.5 (as visualised in Figure 4.3). Sparse rewards are providing

informative feedback every Nsparse-freq = 25 steps, such that agents receive such re-
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wards once every episode. Each configuration is run for every task on three different

random seeds to obtain representative results. The full list of parameters chosen for

the evaluation can be found in Appendix B.

4.1.4 Hardware and Software Setup

Evaluation is conducted using the Google Cloud Platform 3 for its Compute Engine

service. Each machine used for evaluation is equipped with four virtual CPUs, 26GB

of system memory and a NVIDIA Tesla K80 GPU with 12GB GDDR5 memory used

for training.

4.2 Results

In this section, we will present the results of the evaluation and analyse the findings.

Figures indicate the mean performance over the three runs executed for each config-

uration with shaded areas corresponding to one standard deviation. Reported rewards

for each episode represent the reward accumulated over the executed 25 steps.

4.2.1 Baseline Results

Among all tasks, we find that the two baselines perform similarly for all tasks with

slight advantages for MADDPG on the cooperative communication and navigation as

well as the predator-prey task compared to IQL. The episode rewards are illustrated in

Figure 4.4.

However, closer observation of the behaviour of the agents shows noticeable differ-

ences. As already reported by Lowe et al. [2017], IQL is unable to learn the intended

speaker communication on the cooperative communication task. Hence the listener

agent just learns to move in the middle of all landmarks in the environment. While

this consistently reaches comparably good rewards, only in MADDPG do the agents

reliably learn the intended communication and movement patterns.

4.2.2 Curiosity Results

Similar results can be obtained using different curiosity variations. For the usual par-

ticle environment tasks, there is little discrepancy to be observed between joint and

3The service is available at https://cloud.google.com.

https://cloud.google.com
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Figure 4.4: Episodic reward of baselines MADDPG (blue) and IQL (orange) for coop-

erative communication (top left), cooperative navigation (top right), physical deception

(bottom left) and predator-prey task.

individual curiosity for each of the approaches. This can be seen for each of the tasks.

Figure 4.5 shows the rewards for MADDPG and IQL using the varying individual and

joint curiosities at the example of the cooperative communication task as well as the

underlying intrinsic rewards.

Generally, curiosity input seems to disrupt training. However, such disturbance ap-

pears less influential for IQL agents, where there is almost no difference depending on

the curiosity approach or its application mode. Presumably, this is the case due to the

independent approach of IQL, where each agent individually computes its Q-function

without considering other agents. While additional intrinsic rewards might affect in-

dividual agents, for MADDPG the joint critic and actor network are both trained con-

currently and depend on each other. Hence, such approaches appear more sensitive to

changes in the reward signal. Furthermore, we can observe that joint curiosity shows

more stable performance than the decentralised curiosity application for MADDPG.

This effect can be explained by inspecting the difference in computed intrinsic reward
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Figure 4.5: Episodic reward of MADDPG (left column) and IQL (middle column) with

individual and joint count (1st row), ICM (2nd row) and RND (3rd row) curiosity on the

cooperative communication task. The right column shows intrinsic rewards for MAD-

DPG and IQL with the respective curiosity applied individually and jointly.

for the varying approaches and application as illustrated in the third column of Fig-

ure 4.5. Joint intrinsic rewards for all agents lead to reduced variance of the intrinsic

signal. Similarly, we notice that the intrinsic rewards decay slightly faster for joint

curiosity. Those effects are to be expected. For joint curiosity, a single curiosity model

is trained using samples from every agent instead of training separate models, which

all require optimisation.

Lastly, it can be observed that the intrinsic rewards computed by the hash-based

counting largely vary from agent to agent. This can be seen in the top right figure

for individual curiosities, but only appears on the cooperative communication task due

to the varying observation sizes as the speaker agent receives low-dimensional inputs.

The smaller the observations, the higher is the likelihood of “hits” in the hash table,

which corresponds to a quicker decay in reward.

Illustrations of the episodic rewards for each task and curiosity configuration can

be found in Appendix C, Figures C.1 to C.4. Similarly, Figure C.21 shows the develop-



Chapter 4. Evaluation 31

0 5000 10000 15000 20000 25000
Episode

−300

−200

−100

0

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG COUNT (joint)

IQL COUNT (joint)

0 5000 10000 15000 20000 25000
Episode

−300

−200

−100

0

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG ICM (joint)

IQL ICM (joint)

0 5000 10000 15000 20000 25000
Episode

−300

−200

−100

0

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG RND (joint)

IQL RND (joint)

0 5000 10000 15000 20000 25000
Episode

−400

−300

−200

−100

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG COUNT (joint)

IQL COUNT (joint)

0 5000 10000 15000 20000 25000
Episode

−400

−300

−200

−100

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG ICM (joint)

IQL ICM (joint)

0 5000 10000 15000 20000 25000
Episode

−400

−300

−200

−100

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG RND (joint)

IQL RND (joint)

0 5000 10000 15000 20000 25000
Episode

−300

−200

−100

0

100

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG COUNT (joint)

IQL COUNT (joint)

0 5000 10000 15000 20000 25000
Episode

−300

−200

−100

0

100

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG ICM (joint)

IQL ICM (joint)

0 5000 10000 15000 20000 25000
Episode

−300

−200

−100

0

100

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG RND (joint)

IQL RND (joint)

0 5000 10000 15000 20000 25000
Episode

−100

−50

0

50

100

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG COUNT (joint)

IQL COUNT (joint)

0 5000 10000 15000 20000 25000
Episode

−100

−50

0

50

100

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG ICM (joint)

IQL ICM (joint)

0 5000 10000 15000 20000 25000
Episode

−100

−50

0

50

100

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

IQL

MADDPG RND (joint)

IQL RND (joint)

Figure 4.6: Episodic reward of baselines MADDPG and IQL compared with count, ICM

and RND curiosity for cooperative communication (1st row), cooperative navigation (2nd

row), physical deception (3rd row) and predator-prey (4th row) task.

ment of intrinsic rewards for count-based, ICM and RND curiosity applied individually

as well as jointly for IQL and MADDPG on all considered tasks.

Figure 4.6 compares joint rewards obtained for all four tasks and curiosities applied

with the plain baseline performances. While the difference with and without curios-

ity applied is subtle on most tasks, we observe that additional curiosity slightly harms

performance on the cooperative communication, cooperative navigation and physical

deception tasks. Also, we can again observe that the impact of curiosity on MADDPG

is considerable, while it hardly affects performance for IQL. For MADDPG, perfor-

mance on mentioned tasks slightly decays with curiosity.

For the predator-prey task, we observe an increase in stability of the reward signal
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for MADDPG applied with the ICM and RND curiosities. This is caused by the in-

creased success of the fleeing agent escaping its adversaries. While it might appear as

a positive outcome at first, it seems that it is primarily caused by the chasing agents

being unable to learn the appropriate behaviour when curiosity is applied.

4.2.3 Partial Observability Results

As expected, introducing partial observability leads to significantly increased variance

in performance. Due to imperfect information, initial positions of all entities have

considerable influence on the problem difficulty. If agents are initialised without seeing

most or even any landmarks and agents, then progress requires challenging exploration.

The effect of increased variance becomes especially visible when directly compar-

ing the baseline algorithms with and without partial observability. Figure 4.7 shows

the episodic rewards obtained by MADDPG and IQL on the original tasks as well as

under partial observability. Additionally, the performance with joint ICM curiosity is

highlighted as an exemplary curiosity.
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Figure 4.7: Episodic rewards for MADDPG (left) and IQL (right) with joint ICM curiosity

for cooperative communication (top) and cooperative navigation (bottom) task with and

without partial observability.
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The discrepancy between full and partial observability is especially noticeable for

the tasks cooperative communication and physical deception. While training on the

predator-prey task, presumably due to its competitive nature with multiple adversaries,

is generally variant, partial observability hardly affects agents in the cooperative nav-

igation task. Simply staying in place and only moving to landmarks in the visible

surrounding achieves decent rewards and can be observed.

For the predator-prey task, we observe that the rewards remain around zero indi-

cating successful escape of the fleeing agent (which is only punished for being caught

or leaving the frame). This is unsurprising in partial observability, where the chasing

adversaries have a harder task in spotting and successfully chasing the agent.
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Figure 4.8: Episodic reward of MADDPG (left) and IQL (right) with individual and joint

count (top), ICM (middle) and RND (bottom) curiosity on the cooperative communication

task under partial observability. The right images show intrinsic rewards for MADDPG

and IQL with the respective curiosity applied individually and jointly.

Unfortunately, we observe that curiosity is unable to alleviate the introduced vari-

ance or assist guided exploration as intended. Neither joint nor decentralised curiosity

application reliably assist training. Figure 4.8 shows the episodic and intrinsic rewards
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obtained when applying multiple curiosity configurations on the cooperative commu-

nication task under partial observability. We see, that there is no noticeable discrepancy

in performance between the curiosity approaches.

All evaluation results under partial observability, including intrinsic rewards, can

be found in Figures C.5 to C.12 and Figure C.22.

4.2.4 Sparse Rewards Results

While curiosity is unable to assist training under partial observability, a significant

improvement can be observed in the sparse rewards setting for MADDPG (Figure 4.9).
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Figure 4.9: Episodic rewards for MADDPG with joint curiosities for cooperative commu-

nication (top) and physical deception (bottom) tasks with and without sparse rewards.

Without any curiosity signal, MADDPG agents are unable to solve any of the tasks

when only trained with sparse reward signals. Agents either remain still or randomly

move around without any apparently learned behaviour. However, once curiosity sig-

nals are provided during training, MADDPG agents learn strong policies. Baseline

MADDPG trained with continuous rewards still outperforms any curiosity configura-

tion trained with sparse rewards, but considerable improvement can be found in some

tasks. It should be noted that especially curiosity computed with the count-based ap-

proach appears to stabilise MADDPG training, where ICM and RND appear less effec-

tive. Presumably, this is caused by increased variance in curiosity signals of ICM and

RND and generally larger, slowly decaying intrinsic rewards. For count-based curios-

ity, the intrinsic rewards largely decay very quickly, which appears to prevent training
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disruption for these tasks. This can be observed in Figure 4.10 at the example of the

cooperative communication task.
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Figure 4.10: Intrinsic rewards for MADDPG and IQL with individual and joint curiosities

for cooperative communication task with sparse rewards.

Similar to the observed results under partial observability, we find that IQL is more

invariant to the introduced challenge of sparse rewards and provided curiosity. Gener-

ally, IQL agents reach comparable performance when trained with sparse rewards, no

matter the curiosity. Figure 4.11 highlights this with the episodic rewards for the co-

operative communication and physical deception tasks. Additionally, performance is
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Figure 4.11: Episodic rewards for IQL with joint curiosities for cooperative communica-

tion (top) and physical deception (bottom) tasks with and without sparse rewards.

only slightly affected by the additional challenge of sparse rewards. While converged

performance appears to be unaffected by sparse rewards, IQL trained with continuous

rewards converges quicker to the behaviour.
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4.2.5 Time Overhead

When considering curiosity, the additional cost of application must not exceed its use.

Therefore, we report the additional time required to train with such intrinsic rewards.

Table 4.1 shows the training time of all configurations on the original tasks. It should

be noted that sparse rewards do not impact training time (noticeably). However, the in-

troduction of partial observability increases training time due to distance computations

for agent observations in each iteration. The difference can be observed for all tasks

and configuration in Tables C.1 to C.3.

Training time (in s) MADDPG IQL

Baseline 1181.35+−6.70 1061.44+−7.83

COUNT 1236.65+−20.41 1131.53+−11.71

COUNT (joint) 1236.98+−7.39 1156.89+−4.51

ICM 1307.24+−2.94 1196.75+−10.97

ICM (joint) 1311.74+−4.32 1207.72+−5.70

RND 1251.21+−14.22 1150.68+−4.96

RND (joint) 1236.57+−4.09 1151.78+−9.52

Training time (in s) MADDPG IQL

Baseline 2035.47+−4.13 1909.75+−22.34

COUNT 2172.93+−21.78 1964.71+−16.52

COUNT (joint) 2179.26+−20.34 1963.43+−19.51

ICM 2251.91+−29.74 2073.12+−37.87

ICM (joint) 2267.04+−23.62 2100.06+−16.47

RND 2160.37+−20.87 2002.03+−26.07

RND (joint) 2172.50+−22.52 1986.23+−32.44

Training time (in s) MADDPG IQL

Baseline 1796.15+−18.79 1602.39+−12.84

COUNT 1881.22+−20.89 1718.93+−8.23

COUNT (joint) 1874.70+−9.69 1739.01+−8.75

ICM 2004.54+−20.41 1835.24+−8.21

ICM (joint) 1988.79+−13.43 1805.95+−10.15

RND 1880.30+−4.01 1742.24+−18.48

RND (joint) 1878.81+−15.08 1739.74+−16.20

Training time (in s) MADDPG IQL

Baseline 2689.98+−16.77 2467.60+−9.16

COUNT 2839.22+−18.36 2562.10+−10.55

COUNT (joint) 2829.41+−35.68 2563.47+−6.70

ICM 2986.11+−18.22 2711.24+−43.49

ICM (joint) 2929.34+−17.64 2683.16+−39.37

RND 2869.65+−54.09 2524.62+−23.56

RND (joint) 2821.58+−5.83 2533.52+−24.25

Table 4.1: Training time on the cooperative communication (top left), cooperative navi-

gation (top right), physical deception (bottom left) and predator prey (bottom right) task.

As expected, training time primarily scales with the number of agents. Addition-

ally, it can be noticed that training for IQL with DQNs is slightly faster than MADDPG

training. This is unsurprising given that MADDPG requires optimisation of two sepa-

rate networks during training. Similarly, ICM requires optimisation of the inverse- and

forward models with a generally larger network structure. This causes ICM training to

be costlier than RND with comparably small networks. The count-based curiosity with

computationally inexpensive hash computation and RND appear to introduce similar

overhead.
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Future Work

In this work, we proposed a general framework for curiosity application as exploration

incentives in MARL. In the evaluation, remaining shortcomings were identified moti-

vating further research on the concept.

5.1 Intrinsic Reward Scaling

The application of curiosity, similar to most forms of reward shaping, is highly task-

dependent. The primary cause for this variability is highlighted in Section 3.3.1. Ac-

curate scaling of intrinsic rewards has a significant impact. If rewards are too large,

they may heavily distort training. On the other hand, small intrinsic rewards will have

no impact at all. Similarly, the speed of curiosity decay is essential to allow algorithms

to learn from additional exploration without being disrupted. In the case of slow de-

cay, training is presumably negatively affected as the optimal, true value function can

only be learned in the absence of intrinsic rewards (if applied as additional rewards as

defined in Section 3.2).

Therefore, it is worth considering automated scaling approaches for intrinsic re-

wards. Stadie et al. [2015] propose a simple approach to scale such exploration bonuses.

They normalise the intrinsic reward signal, defined as the prediction error eT by divid-

ing by the largest error encountered and an additional decay constant C > 0. Similarly,

our intrinsic reward signal rI
t at time t could be normalised as follows

r̄I
t =

rI
t

t ·C ·maxt ′≤t rI
t ′

(5.1)

with similar linear decay using C.

37
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5.2 Curiosity-Assignment Problem

From our experiments, it seems that joint curiosity application is preferable due to its

improved stability and synchronised decay compared to decentralised curiosity. In-

troducing such exploration bonus for MARL appears promising, but comes with a

considerable challenge. Currently, we compute curiosity over the joint observations

(and actions for ICM) and provide each agent with the same intrinsic reward. This

appears suboptimal in most applications. Often, only few agents will be responsible or

largely contributing to the received reward bonus. Hence, such agents should be ex-

clusively rewarded rather than rewarding all agents, many of which did not contribute

to the rewarded exploration.

This challenge is largely correlated to the credit-assignment problem for MARL,

referred to in Section 2.1, as it essentially poses the same challenge for intrinsic re-

wards. Any method to reason about the individual contribution of agents to the com-

puted curiosity could enhance exploration guidance. Foerster et al. [2018] proposed

a counterfactual baseline for multi-agent policy gradients in an approach similar to

MADDPG. A centralised critic shared among all agents enables reasoning about the

expected advantage of choosing a single action over other actions for each agent. A

similar approach could be applied to curiosity in MARL by introducing an additional

head for the value function network (like DQN or MADDPG critic) of each agent. This

head would be trained to estimate the received joint curiosity based on joint action and

observation. Using such a curiosity critic, we could identify an agent’s contribution to

received intrinsic reward by approximating the curiosity that would have been received

for other actions of that particular agent.

5.3 Communicated Curiosity

While joint curiosity appears superior to individual curiosity application, it requires

centralised training as enforced by common MARL algorithms like MADDPG [Lowe

et al., 2017] or COMA [Foerster et al., 2018]. However, in some applications such

training is impossible and therefore decentralised curiosity has to be applied. In these

cases, communication among agents could be a possible solution to coordinate explo-

ration efforts. Communication has already led to considerable improvements in coop-

erative MARL tasks [Foerster et al., 2016]. Curiosity signals could be shared across

such communication channels and each individually motivated agent could compute a
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combined intrinsic reward based on all received curiosities, similar to the centralised

approach proposed by Iqbal and Sha [2019], for flexible and stable exploration.

5.4 Decentralised Curiosity

Independent application of curiosity appears to be much more variant than joint appli-

cation. Hence, it would be advantageous to be able to apply such joint curiosity even

during decentralised training. We propose to research the applicability of modelling

approaches for predicted joint curiosity. Each agent could construct models of other

agent policies to predict their action choices. This could be used to compute pseudo-

joint curiosities based on individual observations and joint actions, where actions of

other agents are predicted using trained models.

Such modelling approaches are already widely used in multi-agent systems to rea-

son about the behaviour of other agents [Albrecht and Stone, 2018] and could assist

decentralised curiosity application next to communication.

5.5 Noisy Environment

Curiosity approaches are known to be sensitive to noise as illustrated by Burda et al.

[2018a]. For count-based approaches, noisy environments can cause observations to

be misleadingly interpreted as different, while prediction-based curiosity would be

unable to foresee stochastic influences. This leads to agents remaining curious, which

can negatively affect training, and loses its purpose as guided exploration incentives.

Hence, we propose to research the impact of noise on curiosity in MARL.

It should be distinguished between “static noise”, which is additionally received as

input without disturbing other parts of observations, and “environmental noise”. Latter

is integrated into the environment. Therefore, agents can actively choose to step into

it to constantly receive misleading curiosity. Such environmental noise corresponds to

the noisy-TV problem introduced by Burda et al. [2018a]. Proposed “static noise” is

comparable to the white noise added around the original input by Pathak et al. [2017]

in their experiments.

Both forms of noise were implemented for the evaluated particle environment tasks

and are publicly available. We encourage experimentation with these tasks for further

research of curiosity in multi-agent systems.
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Conclusion

This dissertation aimed to research the influence of curiosity as exploration incentives

for MARL. We evaluated the impact on policy-gradient and value-based MARL in

competitive and cooperative tasks.

When applied for the original MAPE tasks, curiosity leads to considerable distor-

tion of training. It is not just unable to provide useful, guided exploration, but harms

training stability and convergence. This can be observed on all tasks using any of the

curiosity approaches. Against our initial expectation, similar results are obtained un-

der partial observability. While curiosity appears to not harm performance, it does not

alleviate the instability introduced by incomplete information about the environmental

state.

However, curiosity has a considerable effect on policy-gradient methods when

trained with sparse rewards. Without additional intrinsic rewards, training of such

MARL appears highly unstable and unable to learn any guided behaviour. The base-

line performance trained with continuous rewards is not reached even with additional

curiosity, but training becomes more reliable and agents show considerable learning on

most tasks. It was also observed that appropriate scaling and decay of intrinsic rewards

is crucial to performance. On the other hand, value-based MARL appears to be more

stable under such conditions in general and is hardly influenced by curiosity.

We hope that the research conducted during this project shows the prospect of in-

trinsic rewards and serves as a foundation for further research to expand on. Chapter 5

highlights some possible directions to improve decentralised and centralised curiosity

application in MARL. Furthermore, we motivate the challenge of noisy environments,

which has not been addressed yet for intrinsic rewards in MARL.
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Implementation Dependencies

The entire project is implemented in Python 3.7 [Python Core Team, 2019] and sci-

entific computation uses the Numpy [Oliphant, 06 ] library, version 1.15. All deep

learning networks for baseline algorithms and curiosity methods were defined with

PyTorch 1.1.0 [Paszke et al., 2017]. A full list of all such dependencies is shown in

Table A.1.

Our implementations and respective documentation are publicly available under

https://github.com/LukasSchaefer/MSc_Curiosity_MARL.git Table A.1 shows

a full list of software dependencies for the project.

Name Description Version Citation Source

Python programming language 3.7 Python Core Team [2019] https://www.python.org

NumPy scientific computation library 1.15 Oliphant [06 ] https://numpy.org

PyTorch deep learning platform 1.1.0 Paszke et al. [2017] https://pytorch.org

Matplotlib 2d plotting library 3.0.3 [Hunter, 2007] https://matplotlib.org

OpenAI Gym RL environment toolkit 0.10.5 Brockman et al. [2016] https://gym.openai.com

MAPE1 MARL environment / Lowe et al. [2017] 2

Table A.1: Dependencies for Implementation

Matplotlib [Hunter, 2007] was used to generate all plots found in this dissertation.

1Multi-agent particle environment
2Modified version for partial-observability available under https://github.com/

LukasSchaefer/multiagent-particle-envs. Original version can be found under
https://github.com/openai/multiagent-particle-envs.
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Appendix B

Evaluation Parameterisation

Table B.1 shows a full list of hyperparameters used for the evaluation.

ε-greedy policies in IQL are initially using ε of 1. After, the exploration factor is

continuously decayed over the number of episodes, Nepisodes, until a value of 0.01 is

reached. This is achieved by multiplying ε with a decay factor at each step. The decay

factor is computed as n√0.01, where n = Nepisodes ·Nmax-episode-length. This ensures that

after n environment steps ε = (
n√0.01)n ·1.0 = 0.01.

0 10000 20000
Episode

0.0

0.5

1.0

E
ps

ilo
n

Exploration Epsilon

Figure B.1: ε-decay for 25,000 episodes each having 25 steps.
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Name Description Value

Nepisodes total number of episodes 25,000

Nmax-episode-length maximum length of an episode 25

Nupdate-freq number of environment steps before optimisation 100

dh hidden dimensionality of algorithm networks 128

αMADDPG learning rate for MADDPG optimiser 0.01

αIQL learning rate for IQL optimiser 0.001

γ discount factor 0.9

τ soft target update factor 0.01

ND replay buffer capacity 1,000,000

Nbatch-size replay buffer batch size 1,024

η scaling weight factor for curiosity reward 5

dhc hidden dimensionality of curiosity networks 128

dφ dimensionality of state representation of curiosity 64

αc learning rate for curiosity optimiser 2e−6

dk dimensionality of key for hash-count based curiosity 32

δ decay rate for hash-count based curiosity 1

Neval-freq number of episodes before evaluation episodes 100

Neval-eps number of episodes for each evaluation 5

dpartial-obs distance for partial observability 0.5

Nsparse-freq number of environment steps before rewards 25

Table B.1: Hyperparameters for evaluation



Appendix C

Evaluation Results

The following appendix lists plots and tables illustrating the performance of all con-

figurations and curiosities on all tasks. First, the episodic rewards obtained by each

applied configuration is reported for each task, including partial observable versions

and tasks with sparse rewards.

Secondly, the intrinsic rewards computed by each approach applied decentralised

and jointly are illustrated. Lastly, the training time for each configuration is high-

lighted.
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C.1 Episodic Rewards

C.1.1 Multi-Agent Particle Environment

C.1.1.1 Cooperative Communication
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Figure C.1: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for cooperative communication task.
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C.1.1.2 Cooperative Navigation
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Figure C.2: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for cooperative navigation task.
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C.1.1.3 Physical Deception
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Figure C.3: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for physical deception task.
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C.1.1.4 Predator Prey
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Figure C.4: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for predator prey task.
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C.1.2 Multi-Agent Particle Environment under Partial Observability
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Figure C.5: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for cooperative communication task under partial observ-

ability.
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Figure C.6: Episodic rewards for MADDPG (left column) and IQL (right column) with

joint curiosities for cooperative communication task with and without partial observabil-

ity.
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C.1.2.2 Cooperative Navigation
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Figure C.7: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for cooperative navigation task under partial observability.
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Figure C.8: Episodic rewards for MADDPG (left column) and IQL (right column) with

joint curiosities for cooperative navigation task with and without partial observability.
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C.1.2.3 Physical Deception
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Figure C.9: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for physical deception task under partial observability.
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Figure C.10: Episodic rewards for MADDPG (left column) and IQL (right column) with

joint curiosities for physical deception task with and without partial observability.
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C.1.2.4 Predator Prey
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Figure C.11: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for predator prey task under partial observability.
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Figure C.12: Episodic rewards for MADDPG (left column) and IQL (right column) with

joint curiosities for predator prey task with and without partial observability.
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C.1.3 Multi-Agent Particle Environment with Sparse Rewards

C.1.3.1 Cooperative Communication
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Figure C.13: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for cooperative communication task with sparse rewards.



Appendix C. Evaluation Results 58

0 5000 10000 15000 20000 25000
Episode

−400

−200

0

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

MADDPG with sparse rewards

MADDPG COUNT (joint) with sparse rewards

0 5000 10000 15000 20000 25000
Episode

−400

−200

0

R
ew

ar
d

s

Average Episodic Rewards

IQL

IQL with sparse rewards

IQL COUNT (joint) with sparse rewards

0 5000 10000 15000 20000 25000
Episode

−400

−200

0

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

MADDPG with sparse rewards

MADDPG ICM (joint) with sparse rewards

0 5000 10000 15000 20000 25000
Episode

−400

−200

0

R
ew

ar
d

s

Average Episodic Rewards

IQL

IQL with sparse rewards

IQL ICM (joint) with sparse rewards

0 5000 10000 15000 20000 25000
Episode

−400

−200

0

R
ew

ar
d

s

Average Episodic Rewards

MADDPG

MADDPG with sparse rewards

MADDPG RND (joint) with sparse rewards

0 5000 10000 15000 20000 25000
Episode

−400

−200

0

R
ew

ar
d

s

Average Episodic Rewards

IQL

IQL with sparse rewards

IQL RND (joint) with sparse rewards

Figure C.14: Episodic rewards for MADDPG (left column) and IQL (right column) with

joint curiosities for cooperative communication task with and without sparse rewards.
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C.1.3.2 Cooperative Navigation
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Figure C.15: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for cooperative navigation task with sparse rewards.
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Figure C.16: Episodic rewards for MADDPG (left column) and IQL (right column) with

joint curiosities for cooperative navigation task with and without sparse rewards.
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C.1.3.3 Physical Deception
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Figure C.17: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for physical deception task with sparse rewards.
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Figure C.18: Episodic rewards for MADDPG (left column) and IQL (right column) with

joint curiosities for physical deception task with and without sparse rewards.
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C.1.3.4 Predator Prey
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Figure C.19: Episodic rewards for MADDPG (left column) and IQL (right column) with

individual and joint curiosities for predator prey task with sparse rewards.
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Figure C.20: Episodic rewards for MADDPG (left column) and IQL (right column) with

joint curiosities for predator prey task with and without sparse rewards.
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C.2 Intrinsic Rewards

C.2.1 Multi-Agent Particle Environment
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Figure C.21: Intrinsic rewards for MADDPG and IQL with individual and joint curiosities

for cooperative communication (1st row), cooperative navigation (2nd row), physical

deception (3rd row) and predator prey (4th row) task.
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C.2.2 Multi-Agent Particle Environment under Partial Observability
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Figure C.22: Intrinsic rewards for MADDPG and IQL with individual and joint curiosities

for cooperative communication (1st row), cooperative navigation (2nd row), physical

deception (3rd row) and predator prey (4th row) task under partial observability.
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C.2.3 Multi-Agent Particle Environment with Sparse Rewards
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Figure C.23: Intrinsic rewards for MADDPG and IQL with individual and joint curiosities

for cooperative communication (1st row), cooperative navigation (2nd row), physical

deception (3rd row) and predator prey (4th row) task with sparse rewards.
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C.3 Training Time

C.3.1 Multi-Agent Particle Environment

Training time (in s) MADDPG IQL

Baseline 1181.35+−6.70 1061.44+−7.83

COUNT 1236.65+−20.41 1131.53+−11.71

COUNT (joint) 1236.98+−7.39 1156.89+−4.51

ICM 1307.24+−2.94 1196.75+−10.97

ICM (joint) 1311.74+−4.32 1207.72+−5.70

RND 1251.21+−14.22 1150.68+−4.96

RND (joint) 1236.57+−4.09 1151.78+−9.52

Training time (in s) MADDPG IQL

Baseline 2035.47+−4.13 1909.75+−22.34

COUNT 2172.93+−21.78 1964.71+−16.52

COUNT (joint) 2179.26+−20.34 1963.43+−19.51

ICM 2251.91+−29.74 2073.12+−37.87

ICM (joint) 2267.04+−23.62 2100.06+−16.47

RND 2160.37+−20.87 2002.03+−26.07

RND (joint) 2172.50+−22.52 1986.23+−32.44

Training time (in s) MADDPG IQL

Baseline 1796.15+−18.79 1602.39+−12.84

COUNT 1881.22+−20.89 1718.93+−8.23

COUNT (joint) 1874.70+−9.69 1739.01+−8.75

ICM 2004.54+−20.41 1835.24+−8.21

ICM (joint) 1988.79+−13.43 1805.95+−10.15

RND 1880.30+−4.01 1742.24+−18.48

RND (joint) 1878.81+−15.08 1739.74+−16.20

Training time (in s) MADDPG IQL

Baseline 2689.98+−16.77 2467.60+−9.16

COUNT 2839.22+−18.36 2562.10+−10.55

COUNT (joint) 2829.41+−35.68 2563.47+−6.70

ICM 2986.11+−18.22 2711.24+−43.49

ICM (joint) 2929.34+−17.64 2683.16+−39.37

RND 2869.65+−54.09 2524.62+−23.56

RND (joint) 2821.58+−5.83 2533.52+−24.25

Table C.1: Training times for MADDPG and IQL with individual and joint curiosities

for cooperative communication (top left), cooperative navigation (top right), physical

deception (bottom left) and predator prey (bottom right) task.
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C.3.2 Multi-Agent Particle Environment under Partial Observability

Training time (in s) MADDPG IQL

Baseline 1250.11+−9.87 1149.04+−7.73

COUNT 1308.24+−23.29 1193.47+−6.60

COUNT (joint) 1315.00+−8.93 1197.76+−11.26

ICM 1366.13+−11.60 1257.67+−12.09

ICM (joint) 1356.91+−11.99 1271.92+−19.31

RND 1267.29+−25.74 1178.45+−6.21

RND (joint) 1273.75+−10.09 1176.02+−11.22

Training time (in s) MADDPG IQL

Baseline 2346.98+−41.40 2110.79+−21.82

COUNT 2395.66+−35.10 2190.82+−28.06

COUNT (joint) 2352.71+−37.66 2227.06+−37.17

ICM 2439.84+−15.77 2262.98+−30.60

ICM (joint) 2433.60+−26.70 2318.65+−78.85

RND 2258.50+−15.83 2173.27+−66.13

RND (joint) 2299.67+−57.24 2101.19+−15.14

Training time (in s) MADDPG IQL

Baseline 1979.58+−8.88 1830.87+−31.25

COUNT 2058.01+−13.36 1926.44+−22.44

COUNT (joint) 2076.44+−4.51 1897.19+−8.60

ICM 2146.44+−13.85 1980.83+−15.10

ICM (joint) 2138.27+−28.79 1972.59+−32.82

RND 2049.32+−30.45 1868.68+−22.24

RND (joint) 2013.28+−28.45 1867.21+−7.92

Training time (in s) MADDPG IQL

Baseline 2918.95+−7.45 2679.24+−20.32

COUNT 3002.49+−30.11 2767.72+−37.60

COUNT (joint) 3050.88+−25.44 2816.98+−24.72

ICM 3150.09+−38.47 2907.24+−26.08

ICM (joint) 3182.70+−50.44 2935.51+−24.78

RND 2956.11+−27.67 2660.36+−0.78

RND (joint) 2901.15+−6.21 2669.79+−36.82

Table C.2: Training times for MADDPG and IQL with individual and joint curiosities

for cooperative communication (top left), cooperative navigation (top right), physical

deception (bottom left) and predator prey (bottom right) task under partial observability.
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C.3.3 Multi-Agent Particle Environment with Sparse Rewards

Training time (in s) MADDPG IQL

Baseline 1222.39+−3.97 1114.19+−4.19

COUNT 1274.78+−20.65 1162.51+−20.79

COUNT (joint) 1269.88+−8.25 1200.06+−9.37

ICM 1318.55+−11.67 1214.21+−8.46

ICM (joint) 1324.71+−4.27 1213.64+−6.70

RND 1236.81+−3.66 1128.33+−8.99

RND (joint) 1239.75+−6.67 1146.20+−3.45

Training time (in s) MADDPG IQL

Baseline 2116.46+−22.69 1907.01+−25.59

COUNT 2195.79+−24.88 2024.31+−7.26

COUNT (joint) 2230.98+−2.34 2073.29+−2.33

ICM 2274.98+−4.79 2097.70+−36.47

ICM (joint) 2274.54+−14.32 2109.50+−18.55

RND 2152.70+−1.87 2019.10+−15.94

RND (joint) 2160.27+−32.65 1979.45+−48.92

Training time (in s) MADDPG IQL

Baseline 1827.27+−27.31 1676.32+−9.47

COUNT 1915.92+−2.89 1749.47+−16.57

COUNT (joint) 1950.27+−31.87 1747.61+−9.03

ICM 1993.05+−5.54 1809.85+−10.31

ICM (joint) 2020.55+−16.29 1830.45+−0.87

RND 1907.22+−14.95 1736.41+−6.78

RND (joint) 1916.91+−9.48 1711.12+−12.75

Training time (in s) MADDPG IQL

Baseline 2788.26+−19.32 2546.15+−33.27

COUNT 2878.25+−10.60 2633.62+−52.29

COUNT (joint) 2914.54+−44.25 2659.92+−40.89

ICM 2965.98+−6.59 2764.67+−23.20

ICM (joint) 3026.98+−20.95 2713.50+−9.05

RND 2818.00+−13.45 2563.77+−11.25

RND (joint) 2863.79+−53.19 2587.64+−19.80

Table C.3: Training times for MADDPG and IQL with individual and joint curiosities

for cooperative communication (top left), cooperative navigation (top right), physical

deception (bottom left) and predator prey (bottom right) task with sparse rewards.
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