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Abstract

This thesis transfers and evaluates the work of Action Schema Networks (ASNets) for
domain-dependent policy learning for classical automated planning. First, we will intro-
duce the foundational background of automated planning and deep learning in the form
of neural networks. Subsequently, the structure and learning of ASNets will be explained
as well as their partially already evaluated performance. Afterwards, the definition of the
network for application in the Fast-Downward planning system and necessary extensions
to this framework will be explained. This also includes an adapted training and sam-
pling strategy for efficient learning of ASNets. Lastly, an extensive empirical evaluation
is conducted to compare the network performance in classical planning to state-of-the-art
planners and assess whether these neural networks are suited for this planning field. While
it could be seen that ASNets are capable of learning effective policies for application in
search, they still have major limitations regarding their ability to generalise and scale.
In the end, we propose extensions and modifications based on our evaluation results to
improve their performance for further research.
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Chapter 1

Introduction

The wide field of artificial intelligence (AI) has many different branches. One of which
is automated planning with the big goal of creating an intelligent agent which is able to
efficiently solve (almost) arbitrary problems. While this sounds like a vision far in the
future, modern planning systems are already capable of solving a wide variety of tasks,
e.g. complex scheduling tasks. The field has seen great progress with the upcoming
of heuristic search in 2000 and upon this concept many sophisticated heuristics were
developed and thoroughly researched. However, it might be surprising that planning has
seen little interaction with the field of machine learning despite its rise in popularity. Only
in recent past, these two fields were combined with mixed success.

Machine learning itself is a branch of AI covering algorithms which allow a system
to learn from data. This concept has received a tremendous increase in attention from
public and research over the last decade. The ability to learn and rationally apply gained
knowledge was and still is the main reason why humans are superior to computers in solv-
ing many problems despite their gradually increasing computational power. This makes
machine learning so exciting, because its approach aims to change the major remaining
limitation of computers. While technology is still far from rational thinking robots, as
presented in science fiction, the field has seen astonishing progress in the last years. One
popular success story of machine learning would be Alpha Go [49] and Alpha Go Zero
[50]. These algorithms attracted a wide media attention in 2016, when they were able to
beat a human professional player in the Chinese board game Go. A success story of AI
given that this achievement was predicted to still be a decade from reality, due to Go’s
computational complexity. In the core of these programs were neural networks, which are
often titled with the topic of deep learning, combined with algorithms from or at least
related to automated planning.

The success of neural networks, even besides Alpha Go in domains like image recog-
nition [33] and machine translation [4] motivated research from all branches of AI to look
for further applications of these networks and fitting architectures for the upcoming chal-
lenges. Toyer et al. from the Australian National University recently proposed a new
neural network structure designed for application in probabilistic and classical automated
planning, called Action Schema Networks [53, 54]. These are able to learn domain-specific
knowledge in planning and apply it to unseen problems of the same domain. The promis-
ing structure was primarily introduced and evaluated considering probabilistic planning.

In this thesis, we aim to evaluate the possible performance of neural networks in form
of Action Schema Networks in classical planning. Therefore we begin by explaining the
relevant background of automated planning as well as deep learning and outline already
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2 CHAPTER 1. INTRODUCTION

existing approaches for learning in planning. Secondly, a detailed description of Action
Schema Networks will be provided explaining their architecture and general capabilities.

The main contribution of this thesis will be the implementation of this novel neural
network structure in the Fast-Downward planning system [25] for application in determin-
istic, classical planning. We will explain extensions of the Fast-Downward system neces-
sary for Action Schema Networks and lastly conduct an empirical evaluation comparing
the neural network to prominent, modern planning systems on multiple tasks of vary-
ing complexity. This evaluation will consider different configurations to assess whether
Action Schema Networks are a suitable method for classical planning and if so under
which conditions. In the end, possible further modifications and extensions for neural
networks and Action Schema Networks in particular for the classical planning field will
be proposed, based on our analyses of the evaluation, aiming towards the goal of learning
complex relations occurring in planning tasks.



Chapter 2

Background

In this chapter, we aim to explain the core concepts of automated planning as well as
neural networks. Afterwards we will briefly look into the already existing research done
about learning in automated planning. This serves as a foundation to explain Action
Schema Networks.

2.1 Automated Planning

For this thesis, we will focus on classical planning, which is the most basic form of auto-
mated planning (AP). Hence, the work focuses on finite, deterministic, fully-observable
problems solved by a single agent. The predominant formalisation for planning tasks is
STRIPS [19] representing such a task as Π = (P ,A, c, I, G):

• P is a set of propositions (or facts)
• A is a set of actions where each action a ∈ A is a triple (prea, adda, dela) with
prea, adda, dela ⊆ P including a’s preconditions, add list and delete list with adda ∩
dela = ∅

– preconditions are facts, which have to be true for a to be applicable
– add list contains all propositions becoming true after applying a
– delete list contains all propositions becoming false after applying a

• c : A → R+
0 is the cost function assigning all actions to their cost

• I ⊆ P is the initial state containing all propositions, which are true at the start of
the task
• G ⊆ P is the goal with all facts which have to become true to solve the task

L M

G

E

Figure 2.1: Transport planning-task. The truck has to drive from London (L) to Manch-
ester (M), pick up the package, drive to Edinburgh (E) and unload the package there

3



4 CHAPTER 2. BACKGROUND

For example, one could describe a transportation task in which a truck has to deliver
a package from some location to its destination by driving along streets and load or
unload packages, illustrated in Figure 2.1. There would be propositions P = {at(o, x) |
o ∈ {t, p}, x ∈ {L,M,G,E}} and actions A = {drive(x, y, z) | x ∈ {truck}, y, z ∈
{L,M,G,E}, y and z are connected} ∪ {load(x, y, z), unload(x, y, z) | x ∈ {truck}, y ∈
{package}, z ∈ {L,M,G,E}}. The goal could be formalised as {at(package, E)} and
the initial state describes the starting position of the truck and package as {at(truck, L),
at(package,M)}.

To solve any task Π, the agent has to observe the current state and choose actions,
one at a time, in order to reach a goal state s∗ with G ⊆ s∗. The sequence of actions,
applied to get to such a state, is called plan for Π. A plan is considered optimal if it has
the least cost out of all plans reaching a goal. E.g., the optimal plan for our transport
task would be 〈drive(truck, L,M), load(truck, package,M), drive(truck,M,E),
unload(truck, package, E)〉.

Modelling planning-tasks consist of two components: the domain and the problem.
This separation has its origin in the main modelling language for planning PDDL (Plan-
ning Domain Definition Language) introduced by McDermott et al. [39]. A domain de-
scribes a family of various problems sharing the core idea. It contains predicates defined
on abstract objects, which are organised in a type hierarchy, as well as action schemas.
Problem instances are always assigned a domain which predefines mentioned elements. In
the problem file concrete objects are defined, which instantiate the predicates and action
schemas of the domain to propositions and actions respectively. Furthermore the initial
and goal states are specified.

Looking at the transport task, the domain would define general concepts like lo-
cations, trucks and packages with the predicates at(?o − locatable, ?l − location) and
connected(?l1− location, ?l2− location) annotating the position of locatable objects like
trucks and packages as well as connections between locations. Additionally, it would
include the abstract schema for all actions. E.g. the drive schema could look like the
following drive(?v−vehicle, ?from− location, ?to− location) with its preconditions, add
and delete lists. The problem would introduce the exact locations, here L, M, G and
E, as well as the truck and package and state the initial positions of both these objects
together with the connections between locations and the goal.

Most of these planning problems seem conceptually easy for rational-thinking humans,
but this impression can be misleading. In fact, planning is computationally extremely
difficult. Merely deciding whether a task is solvable is already PSPACE-complete [10].

In order to overcome this problem and build a planner, which is able to solve arbitrary
planning-tasks, AI-research came up with many different approaches over the past 50
years. Since IPC1 2000, the most promising solution seems to be heuristic search. This
approach traverses the problem’s state-space with a search algorithm, e.g. A*, led by a
heuristic function which estimates a state’s distance to the closest goal.

Due to the computational complexity of planning, these heuristics must significantly
relax the task to provide feasible guidance. One popular approach is the delete-relaxed
plan heuristic hFF , introduced by Hoffmann and Nebel in 2001 [27], which relaxes the
problem by removing all deletes from actions. Therefore all propositions remain true
within the computation of the heuristic value for a given state after they have been
achieved once.

1The International Planning Competition (IPC) is the major driving force in AP research which
started in 1998.
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This form of abstraction seems highly confusing to humans, but can be computed
in polynomial time, significantly reducing the computational effort, without loosing too
much information. There are many more approaches to heuristic functions besides delete-
relaxation.

2.2 Learning in Automated Planning

While heuristic functions significantly improved the performance of planning systems,
most planners use domain-independent heuristics due to their flexibility. These can be
applied to arbitrary domains but compared to domain-specific heuristics, which can im-
prove scalability of planners [2, 41] in a subset of domains, limit performance. However,
domain-specific knowledge is required to define these tailored heuristics. Manually defin-
ing this knowledge is difficult and needs expertise in the domain and planning. Therefore
one application of learning in AP is to learn such domain-specific knowledge to create
specialised heuristics.

Generally there are various different approaches on how to apply (machine) learning
in AP. This topic, despite having a long history, only received more attention in recent
past. Jiménez et al. provide an overview of multiple of these ideas proposed [29] and dif-
ferentiate between two categories of learning in planning. The first one is learning action
models, so learning the fundamental model of the task. Secondly they look at learning
control knowledge which can be exploited during the search. For each approach, one
has to decide on how to represent, obtain and exploit learned knowledge. One popular
approach of learning control knowledge, used in search, is to learn generalised policies
proposing actions depending on the context, which usually consists of the current state
and the goal. E.g. de la Rosa et al. used generalised policies in their ROLLER planner
[15].

Another application that received tremendous attention was DeepMind’s AlphaGo
[49], later AlphaGo Zero [50] which has convincingly beaten human professionals in the
Chinese board game Go. They used Monte Carlo Tree Search (MCTS) [31, 14] with
two policies, which were both learned by neural networks using (supervised learning and)
reinforcement learning. The success of these algorithms were especially impressive given
the computational complexity of the game Go and their usage of neural networks. Before,
these architectures were rarely seen in the context of AP.

2.3 Deep Learning

The idea of neural networks (NNs) has a long history reaching back to the 1940s [38]
inspired by the human brain whose immensely impressive capabilities are partly due to
the dense connectivity of neurons. With the introduction of the perceptron, which was
capable of learning, by F. Rosenblatt in 1958 [45] and backpropagation by Rumelhart et
al. in 1986 [46] the foundation for modern NNs was built.

2.3.1 Multi-Layer Perceptron

The simplest, modern NN architecture is the fully-connected feedforward network or multi-
layer perceptron (MLP) as visualized in Figure 2.2. A MLP always consists of at least two
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layers: one input layer receiving the input x, visualized in yellow colour, and the output
layer, green in the figure, whose nodes transmit the output vector ŷ. In between there
can be an arbitrary amount of hidden layers and every node in a layer l has a weighted
forward connection to every node in successive layer l + 1. The weights are represented
in the matrices W l and are the primary parameters which are learned by such a network.

x1

x2

x3

W 1 W 2

W 3

ŷ1

ŷ2

Figure 2.2: Multi-Layer Perceptron architecture with 4 layers: one input layer in yellow,
two hidden layers in blue and one output layer in green

During evaluation the values are computed layer-wise leading to a representational
vector hl for layer l, which is the result of the corresponding weight matrix W l, a bias
vector bl, the hidden representation of the previous layer hl−1 and an elementwise, non-
linear activation function f :

hl = f(W l · hl−1 + bl) (2.1)

The nonlinearity of f allows the network to represent more complex relations with popular
activation functions being RELU f(x) = max(0, x) and f(x) = tanh(x).

Training of MLPs is often done by supervised learning where a dataset of labelled data,
consisting of input vector x and corresponding outputs y, is provided. The goal is to find
the parameters θ of W 1, ..., WL and b1, ..., bL minimizing the loss L(ŷ, y) computed by
the prediction ŷ and the correct labels y. One popular loss function is the mean squared
error (MSE ):

L(ŷ, y) =
1

n

n∑
i=1

(ŷi − yi)2 (2.2)

Loss functions can be seen as an estimated distance from the network’s prediction to the
correct output labels. This can be used as a metric for the network’s quality but also to
improve the network’s parameters. Given the loss, θ can be updated in the direction of
the steepest descent of L with respect to θ using gradient descent :

θ′ = θ − α∇θL(ŷ, y) (2.3)

α represents the learning rate which determines the magnitude of the descent. These
updates can be seen as gradual steps downhill the loss surface towards parameters deemed
to be of higher quality, i.e. leading to predictions closer to the provided training data.
Therefore during training, the neural network tries to imitate the underlying function
implicitly represented by the used data set. To compute ∇θL(ŷ, y) backpropagation, i.e.
the chain rule for derivation, is used.
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Continuously using gradient descent guarantees the loss to reach a local minimum (or
saddle point) where ∇θL(ŷ, y) = 0.

There are two main challenges in using NNs. The first one is introduced by hyperpa-
rameters of the network like the learning rate α, the number of layers L and units in each
layer etc. They have a tremendous influence on the learning and capacity of the network.
Therefore choosing appropriate parameters is one of the main problems to solve whenever
using NNs.

Another issue, networks frequently suffer from, is overfitting. This happens whenever
the generalisation error is high, so the network is able to minimize the loss on training
data efficiently, but is incapable of performing well on data outside of the specific training
data. One could say, the network is ”too specialised” on the limited data set used for
training. There are various different causes for overfitting and measures to prevent it.
One of the most popular approach to avoid overfitting is regularization in which a term
is added to the loss function punishing e.g. large weights. This is often already sufficient
to prevent generalisation issues but the difficulty whenever dealing with neural networks
remains. Another popular strategy to diminish the risk of overfitting is dropout [51] in
which nodes in the network with their corresponding connections are deactivated with a
given probability p during training, i.e. their output values and connections are dropped
in the currently processed training computation.

There are multiple challenges, like overfitting and choosing hyperparameters, for which
frequently used methods exist which often resolve potential issues. However, these should
not be regarded as generally applicable solutions to those problems but rather as poten-
tially useful techniques when facing these situations.

2.3.2 Convolutional Neural Networks

Convolutional neural networks (CNNs) [34] are a class of NNs which are specifically
designed for multi-dimensional inputs. They are most prominently applied to image data,
reaching state-of-the-art performance in image classification [42] among other domains of
visual computing. But further application has been found. E.g., a convolutional layer has
successfully been used to extract contextual features on hashed word-representations for
query-processing in information retrieval [48].

The main characteristic of CNNs is the application of the mathematical convolution
operation. This linear operation replaces the typical matrix multiplication known from
MLPs where every unit in each layer has a weighted connection to every node in the
successive layer. In convolution, smaller weight matrices, called filters or kernels, are
applied by ”sliding” the filters over the units in one layer with each applying its operation
to a set of neighboured inputs. This form of processing brings multiple advantages.

Due to the usually smaller size of filters, CNNs have sparse connectivity, only com-
bining neighboured units in one operation. This allows to make use of local properties to
extract input features like edges in visual domains, which is especially meaningful in deep
CNNs. While shallow layers could detect edges or shapes of an input image, filters in
deeper layers could work upon these features and potentially detect increasingly abstract
objects like cars and humans.

On the other hand, sparse connectivity also means that units in the network are not
necessarily connected to every node in the consecutive layer. While in CNNs, one unit
might only affect a few units in the following layer, the same holds true for these nodes.
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Therefore the number of units (indirectly) affected by a node increases the deeper we go
in the network. This indirect interaction proved to be highly efficient and sufficient to
learn complex dependencies.

Additionally, filters are reused repeatedly during the ”sliding”, applying their opera-
tion to (partially) different input units. This form of weight sharing allows to significantly
reduce the amount of parameters needed. Hence, the memory requirements of the net-
works are lowered, making them more efficient than fully-connected NNs because less
parameters have to be learned, so needed training time and data can be reduced by the
approach.

After applying the convolution operation, a nonlinear activation function is applied to
the output. Similarly as for MLPs, these functions are essential to learn connections more
sophisticated than linear relations. In addition, it is important for CNNs to be invariant
to small input transformations to be able to reliably detect local properties as intended.
The convolution operation in itself is already equivariant, i.e. applying a function to its
output leads to the same data as applying the convolution to the translated input, making
it invariant to some translations, like minor shifts of input images. In many cases this
property is not sufficient, because the CNN would still be affected by e.g. rotations. To be
able to deal with these, pooling functions are used after applying nonlinearity. A pooling
function provides a statistical recollection of a group of input units by e.g. averaging
same-sized groups of neighboured values of the previous layer or taking the maximum of
each of these groups. This provides further invariance to input transformations and also
reduces the input size without major loss of information, which can be essential to deal
with varying input sizes.

2.4 Action Schema Networks

In this section, we aim to explain the Action Schema Networks (ASNets), a novel NN
family suited for AP, proposed by Sam Toyer et al [53, 54]. The network is capable of
learning domain-specific knowledge, in form of policies, to exploit on arbitrary problems of
a given (P)PDDL domain. First, we will cover the architecture and design of the network.
Further, the training and exploitation of learned knowledge will be explained. Lastly, we
will briefly cover Sam Toyer’s empirical evaluation of ASNets’ performance.

2.4.1 Architecture

ASNets are composed of alternating action and proposition layers, containing action mod-
ules and proposition modules for each ground action or proposition respectively. This
alternating approach of action and proposition layers was influenced by the Graphplan
Planner [5]. The input features are always fed into an action layer. Overall the network
computes a policy πθ, outputting a probability πθ(a | s) to choose action a in a given
state s for every action a ∈ A. The output is done by an action layer and is depending
on the network’s parameters θ. One very simple approach to exploit this policy during
search on planning tasks would be to always choose the action with the highest probability
according to πθ.
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Figure 2.3: Illustration out of Toyer’s thesis [53]; Depicting a L-layer ASNet with L
proposition layers (blue) and L+ 1 action layers (red)

Action modules

The action modules forming each action layer represent ground actions of the planning
task. An action module for a ∈ A in the l-th layer produces a hidden representation

φla = f(W l
a · ula + bla) (2.4)

where ula ∈ Rdla is an input feature vector, W l
a ∈ Rdh×dla is a learned weight matrix for

this action module and bla ∈ Rdh is the corresponding bias. f is a nonlinearity, e.g. RELU
or tanh as specified in Section 2.3.1. dh is a chosen intermediate representation size. The
input vector is a concatenation of hidden representations of proposition modules ψl−11 ,
..., ψl−1M , corresponding to propositions p1, ..., pM that are related to action a, in the
preceding proposition layer.

ula =

ψ
l−1
1
...

ψl−1M

 (2.5)

Proposition p ∈ P is said to be related to action a ∈ A, also written R(a, p), iff p appears
either in prea, adda or dela. Each hidden proposition representation ψl−1i ∈ Rdh has
chosen representation size dh. Therefore the input size dla = dh ·M is fixed. The sparse
connectivity of ASNets based on the definition of relatedness is inspired by the idea of
filters in CNNs, which connect data points based on spatial neighbourhood.

connected(M,E)

at(truck,M)

at(truck, E)

C

drive(truck,M,E)

f(W l
a · ula + bla) φla

ψl−1p1

ψl−1p2

ψl−1p3

ula

Figure 2.4: Illustration of the action module for drive(truck,M,E) action, with truck
driving from Manchester (M ) to Edinburgh (E ). The hidden representations of the re-
lated proposition modules are received as an input, concatenated to ula and the hidden
representation of the action module φla is computed as described.

Due to relatedness, given two actions a1 and a2, that are concrete instances of the
same action schema in the domain, the number of related propositions N will be the
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same. If p1, ..., pN and q1, ..., qN are related to a1 and a2 respectively, then there exists
an order so that pi and qi are concrete propositions constructed by the same predicate.

E.g. a1 = drive(truck,M,E) (as seen in figure 2.4) and a2 = drive(truck, L,M) are
both actions instantiated by the action schema drive(?v−vehicle, ?from−location, ?to−
location). This schema defines the preconditions as {connected(?from, ?to), at(?v, ?from)},
the add list {at(?v, ?to)} and delete list {at(?v, ?from)}. Therefore, we can extract that
all actions of this schema are related to the concrete propositions instantiated by the
predicates {connected(?from, ?to), at(?v, ?from), at(?v, ?to)}.

It becomes apparent, that all actions of a shared schema have inherently similar related
propositions based on the definition of action schemas and relatedness. This property is
essential for the ASNets’ approach to share weights, because in each layer l the actions
c and d from the same action schema will be able to share the same weight matrix
W l
c = W l

d and bias vector blc = bld. This leads to ASNets’ generalisation ability sharing
weights among arbitrary problems of a domain.

Input layer Modules in the first input layer receive an input vector u1a instead of the
hidden representations of a proposition layer. This vector includes truth values for related
propositions in state s, values indicating which propositions are relevant for the problem’s
goal and a value indicating whether an action is applicable in s.

Additionally Sam Toyer et al. experimented with different heuristic features regarding
disjunctive action landmarks as further inputs, computed by the LM-cut heuristic [26].
They proved to be especially important because without these inputs the receptive field
of an ASNet would be limited in the number of layers L, i.e. the ASNet would only be
able to reason about chains of related actions and propositions with length at most L.
This limitation is of special significance whenever the task includes chains of actions that
can be arbitrarily long or are at least longer than L without repetitions of propositional
values or actions.

Output layer In the end, the network has to output a probability πθ(a | s) for every
action a. Therefore the last layer of an ASNet has to compute a probability distribution
over all applicable actions, ensuring that πθ(a | s) = 0 iff prea * s and

∑
a∈A π

θ(a | s) = 1.
This is achieved by a masked softmax activation function in the last output layer where
the binary mask vector m indicates which actions are applicable with mi = 1 iff preai ⊆ s
and mi = 0 otherwise. Additionally the hidden representations φL+1

ai
need to be scalar

values instead of dh-dimensional vectors for the softmax function. Therefore we replace
the weight matrix with a vector WL+1

a ∈ RdL+1
a and the bias vector with a scalar value

bL+1
a ∈ R.

The softmax activation function computes the probability πi to choose action ai like
the following for all actions A = {a1, ..., aN}:

πi =
mi · exp(φL+1

ai
)∑N

j=1mj · exp(φL+1
aj

)
(2.6)

Due to the mask, a is guaranteed not be chosen if it is not applicable in s and the
probability distribution function among the enabled actions is ensured by the softmax
function.
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Proposition modules

Proposition modules are similar to action modules but only occur in intermediate propo-
sition layers. Therefore a hidden representation produced by the module for proposition
p ∈ P in the l-th layer looks like the following

ψlp = f(W l
p · vlp + blp) (2.7)

where vlp ∈ Rdlp is an input feature vector, W l
p ∈ Rdh×dlp is a weight matrix for this propo-

sition module and blp ∈ Rdh is the corresponding learned bias. f is the same nonlinearity
used in the action modules.

The main difference between proposition and action modules, which also makes the
input features vlp in proposition layers slightly more complicated, is that the number of
actions related to one proposition can vary.

This can for example be seen in our transport problem. The proposition at(truck,M)
is related to the drive-actions {drive(truck,M, x), drive(truck, x,M) | x ∈ {L,G,E}},
while at(truck, L) has only two such related actions. This is caused by the different connec-
tivity of locations. Furthermore at(truck,M) is related to the actions load(truck, package,
M), unload(truck, package,M) and at(truck, L) to (un)load(truck, package, L) respec-
tively.

To deal with this variation and be able to share weights among proposition modules,
similarly to the approach for action layers, the input feature vector’s dimensionality dlp has
to be equal for all propositions with the same underlying predicate. Therefore the action
schemas A1, ..., AS ∈ A referencing pred(p), the predicate of proposition p ∈ P , in their
preconditions, add or delete list are collected. When building the hidden representation
vlp of proposition p, all related actions from the listed action schemas are considered with
action module representations of the same action schema being combined to a single
dh-dimensional vector. This is achieved by using a pooling function.

vlp =

pool({φla | op(a) = A1 ∧R(a, p)})
...

pool({φla | op(a) = AL ∧R(a, p)})

 (2.8)

This way, the dimensionality of the hidden representation dlp = dh · L is fixed and the
weight matrix W l

p and bias blp can be shared among all propositions instantiated by the
same predicate, similarly to the weight sharing of actions belonging to the same action
schema. op(a) in equation 2.8 stands for the corresponding action schema A of action a.

2.4.2 Supervised Training

During training, the ASNet is executed on small problems from a domain to learn weights,
which still lead to an efficient policy on larger problems of the same domain. In this
chapter, we will cover the supervised training algorithm, using a teacher policy, proposed
by Sam Toyer et al.

At the beginning of the training, the weights θ are initialized by employing the Glorot
initialisation, or Xavier initialisation [21] using a zero-centred Gaussian distribution.

After initializing the weights, the training epochs are performed. During these, the
state space of each training problem ζ ∈ Ptrain is explored. Starting from its initial
state s0(ζ), the exploration follows the network policy πθ and either stops when L =
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drive(truck, L,M)

drive(truck,M,L)

Pool

Pool

Pool

load(truck, package, L)

unload(truck, package, L)

C

at(truck, L)

f(W l
p · vlp + blp) ψlp

φla1

φla2

φla3

φla4

vlp

Figure 2.5: Illustration of the proposition module for at(truck, L), describing truck to be
in London (L). The hidden representations of the related action modules are received as an
input, combined with pooling and then concatenated to vlp and the hidden representation
of the module ψlp is computed as described.

Ttrajectory−limit states have been visited or a goal or dead-end has been reached. A delete-
relaxed heuristic is used for efficient dead-end detection. This can significantly reduce
training time. Let the set of explored states in epoch e be Seexp.

Additionally, for every s ∈ Seexp a teacher policy (usually an optimal policy) π∗ is used
to extract all states which are reachable from s with nonzero probability. All these states
are included in the set Seopt. Afterwards, the set of training states M, which initially is
∅, is updated as M = M∪ Seexp ∪ Seopt. The states from Seopt ensure that the network is
always trained with ”good” states, while the states from Seexp are important so that the
network is able to improve upon its performance in already visited states.

After each exploration phase the ASNet’s weights θ are updated using the loss function

Lθ(M) =
1

|M|
∑
s∈M

∑
a∈A

πθ(a | s) ·Q∗(s, a) (2.9)

where Q∗(s, a) is the expected cost of reaching a goal from s by following the policy π∗

after taking action a. The update is performed by using minibatch Stochastic Gradient
Descent (SGD) where the loss is computed with respect to smaller, randomly selected
minibatches B ⊆M of fixed size, instead of using the whole datasetM. This strategy can
save the significant expense of computing gradients on large datasets and can generally
converge faster [35]. Additionally the Adam optimization algorithm, proposed by Kingma
and Ba [30], is used to update the weights θ in a direction minimizing Lθ(M).

The exploration and learning stops when Tmax−epochs epochs are exceeded or an early
stopping condition is fulfilled. The condition consists of two parts. First, the network
policy πθ must reach a goal state in at least 99.9% of the states in M in the most recent
epoch. Secondly, the success rate of πθ did not increase by more than 0.01% over the
previous best rate for at least five epochs. This early stopping condition is rather strict
and Sam Toyer et al. already mention that loosening it might improve training.

They also mention that, given the cost of computing an optimal teacher policy, they
tested training ASNets using unguided policy gradient reinforcement learning like the
FPG planner by Buffet and Aberdeen [9]. But in their tests, supervised learning was
found to be more efficient and reliable than reinforcement learning.
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2.4.3 Empirical performance evaluation

Experiment

To be able to evaluate the performance of ASNets, Sam Toyer et al. constructed an exper-
iment comparing it to the state-of-the-art probabilistic planners LRTDP [8], ILAO∗ [22]
and SSiPP [55]. All planners were run with the admissible LM-cut and the inadmissible
hadd heuristic. They are limited at 9000s time and 10Gb memory. LRTDP and ILAO∗

are executed until they converge and SSiPP was trained for the entire time but the last
60s, which were used for evaluation.

The ASNet was trained for each domain using small problem instances and evaluated
30 times on each problem. The networks were always constructed with three action and
two proposition layers, dh = 16 for each module, ELU [12] used as the nonlinear activation
function. A learning rate of 0.0005 and a batch size of 128 was utilized for the Adam
optimization. Additionally, L2 regularization with λ = 0.001 on the weights and dropout
[51] with p = 0.25 on the outputs of all intermediate layers was used to prevent overfitting.
The whole training was limited at two hours. As the teacher policy in the ASNets LRTDP
with hLM−cut and LRTDP using hadd was employed. While the ASNets run with the
optimal LM-cut policy were always provided with additional heuristic inputs from the
LM-cut heuristic, ASNets guided by the suboptimal hadd policy were once executed with
and once without these input features.

The experiment used three different probabilistic planning domains: CosaNostra Pizza
[52], Probabilistic Blocks World [56] and Triangle Tire World [36].

In his thesis, Sam Toyer also analysed ASNets’ performance on deterministic classical
planning. As baselines, multiple heuristic search planners were implemented on the Fast
Downward framework [25]. Greedy best-first search (GBFS) and A∗ were both used with
hLM−cut and hadd. Furthermore LAMA-2011 [44] and LAMA-first, which won the IPC
2011, were used as baselines.

For deterministic planning, Sam Toyer used the Gripper domain [37] for the experi-
ment.

Results

Unsurprisingly, ASNets performed better on large problems compared to smaller ones.
The necessary training of the network is too expensive for most smaller problems to com-
pete with the state-of-the-art baselines. On the other side, ASNets heavily outperformed
all baseline planners in the CosaNostra Pizza and Triangle Tire World domain on large
problem instances. The networks were even able to learn an optimal or near optimal
policy for many problems of both these domains.

Additionally, it is worth noting that the ASNet using a more efficient, but suboptimal
hadd policy was still able to perform well and even exceeded the performance of ASNets
with an optimal LM-cut policy on the Probabilistic Blocks World domain. The reason
is probably the high expense of problems in this domain and ASNets with the LM-cut
policy were unable to scale sufficiently well. But all ASNets needed the heuristic input
features in the Blocks World domain to be able to consider long proposition and action
chains. This was necessary to perform well in this complex domain.

In deterministic planning, ASNets took significantly more time to train and evaluate
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compared to most baseline planners. Only the A∗ planners did not converge for problems
of a size larger than 15. While the solutions of both ASNets using heuristic input features
were found to be optimal on all problems, the ASNet only using the hadd policy without
additonal heuristic input was unable to solve even problems of medium size. The training
of this network was faster, but its confidence in the correct actions was too low to generalise
well. The LAMA planners outperformed all ASNets in the problems, considered by Sam
Toyer, finding optimal solutions significantly faster.

However, it should be noted that the experiment primarily focused on probabilistic
planning and the classical planning part was merely to show the ability of ASNets to be
executed on these tasks. To measure and evaluate the performance of ASNets in classical
deterministic planning, a comprehensive experiment would still be needed.
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Related Work

ASNets are certainly an exiting and promising application of learning in form of neural
networks to automated planning. However, there is more than just this one approach.

Shahab Jabbari Arfaee, Sandra Zilles and Robert C. Holte proposed a learning strategy
in 2011 which combines multiple heuristic functions and a neural network to evaluate for
large state spaces [28]. They started with a heuristic function simply representing the
maximum of a set of input features. These inputs were specifically chosen for the domains,
but are all fairly simple measures, e.g. they used the manhatten distance and five pattern
database heuristic functions [17, 24] among others for the sliding-tile-puzzle domain. The
initial heuristic was incapable of solving any problems in reasonable time. Using this
heuristic a search on problem instances was conducted to extract states along plans leading
to a goal. Arfaee et al. then used the original input features on the sampled training
states together with their goal distance as the input for a neural network. The network
was therefore trained to compute a heuristic itself which was combined with the initial
heuristic function by maximizing over their values for each state. With this algorithm, it
was possible to iteratively improve the heuristic function which led to impressive results for
the evaluated domains sliding-tile-puzzle, pancake-puzzle, Rubik’s Cube and blocksworld.

To collect valuable training states during the heuristic search, even if the used heuristic
function is not performing well yet, they also used random walks from the goal backwards.
This method is of significant importance to make progress, especially at the very begin-
ning of the training process. Despite the performance, it should be noted that preselected
input features had to be chosen for each domain. Even if these inputs are kept simple,
it represents a major limitation to extend this approach to further domains. Addition-
ally, this approach combines multiple, already existing heuristic functions rather than
extracting the final heuristic directly from the network.

In contrast, Christian Bohnenberger trained neural networks to directly compute a
heuristic function for given states of a planning task in his bachelor thesis [6]. The network
input was, similar to ASNets, a binary vector, indicating the truth values of STRIPS
propositions. However, the approach did not include the goal nor applicable values for
actions in the input. The performance of regression and classification networks were
compared using a variety of configurations including early stopping, dropout, different
batch sizes and activation functions. For learning, a supervised training algorithm was
used where the input states were labelled with their h∗ values. The evaluation showed that
the neural networks were able to learn almost optimal heuristics using this approach but
it should be noted, that the entire investigation was only conducted for a single problem
of the transport domain. Therefore, the generalisation capability of this approach is still
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uncertain.
Patrick Ferber followed a similar approach in his master thesis regarding the use of

neural networks as heuristic guidance in search for planning [18]. In this work, multiple
neural network architectures were trained to compute a heuristic function which provides
a good distance measure to the goal. This approach led to almost optimal heuristics while
being significantly more efficient than current optimal heuristics like e.g. LM-cut. Besides
these networks, the thesis also includes extensive studies on sampling strategies used to
extract states with corresponding goal-distances as labelled training data. Approaches
like forward, backward and random walks all have different strengths and were evaluated
regarding the size of the obtained training set and its quality which is often neglected.
A large data set is not necessarily useful when its states are not representative for the
entire state space of the task which should be the main goal of sampling. Lastly, the
work addresses the training process for neural network heuristics comparing a variety of
training as well as network configurations. Overall, it was found that the neural network
heuristics were able to perform well on multiple domains while the optimal configuration
regarding sampling and training of the networks varied among the benchmarks. However,
it is important to note, that this approach is separately trained and exploited on problem
instances and unlike ASNets is incapable of generalising among problems of a common
domain.
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Network Definition

The main contribution of this thesis will be the implementation and evaluation of Action
Schema Networks for classical planning based on the Fast-Downward planning system.
Prior to the integration of the network in this system, the training and evaluation, we
have to first define the network. In Section 2.4.1, we already explained the architecture
proposed by Sam Toyer, showing that the model structure is directly dependent on a
given PDDL domain and problem. In this chapter, we will explain the necessary Fast-
Downward foundation for this process. Following, an efficient strategy to compute the
relations between actions and propositions of the task will be explained and lastly the
concrete definition of the network will be outlined.

4.1 PDDL in Fast-Downward

As mentioned in Section 2.1, planning tasks are usually represented in PDDL, separated
in the domain and problem file. The Fast-Downward planning system uses these in its
translation process to build an internal representation of a PDDL task containing its
abstract action schemas and predicates, instantiation capabilities to extract groundings
as well as the initial and goal states. Afterwards, the task is simplified by normaliza-
tion techniques removing any universal and existential quantifiers potentially included in
conditions of the tasks.

4.1.1 Instantiation

To instantiate action schemas and predicates obtaining grounded actions and propositions,
a PROLOG [13, 32] model is used with the major advantage that instantiations, which
are theoretically possible with the objects given in the PDDL problem but can never be
reached, are not constructed. The impact of this step should not be underestimated,
especially in the context of ASNets. E.g. in the transport domain, the drive(?v, ?from,
?to) action schema would usually be instantiated with every vehicle, and pair of locations
without considering their connections. Similarly the connected(?l1, ?l2) predicate would
be instantiated with every pair of locations leading to |L|2 such propositions with |L|
being the number of locations in the task. The truly existing connections in a problem
would all be given in the initial state and there is no action adding any such connected(x,
y) facts, i.e. all these propositions which are not included in the initial state can never
become true. As ASNets contain an action and proposition module for each grounded
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action and proposition respectively, pruning such unreachable propositions can sometimes
avoid immense blow-up of the network size.

Imagine a transport task with two trucks and eight locations connected in a circle,
so that each location is connected to its two neighbours.. The task contains 8 streets in
total which can be driven by each truck in both directions, leading to 8 ∗ 2 ∗ 2 = 32 drive
actions. Naively instantiating all possible groundings would lead to 2 ∗ 8 ∗ 8 = 128 such
actions. Similarly, the number of connected propositions would be reduced from 64 to
just 16. This has significant impact on the network size of ASNets and therefore improves
their scalability.

4.1.2 PDDL - SAS compatibility

For the planning process, Fast-Downward internally uses a task representation based on
the SAS+ formalism [3] including variables with domains instead of propositions. How-
ever, variable-value pairs represent facts which directly correspond to propositions in the
PDDL task. During the Fast-Downward translation from PDDL to SAS+ further proposi-
tions, which remain constant throughout the whole task but were not previously removed
during the simplification steps, are pruned. Therefore, we identify and remove the cor-
responding propositions in the PDDL task representation, so that the number of facts in
the SAS+ representation used during search matches the number of propositions in the
corresponding PDDL task.

This is essential for the network definition using PDDL, because we later use the
ASNet policy during a Fast-Downward search. Hence, the number of expected input and
output values, connected to the number of propositions and actions, during the network
model creation has to be equal to the number of input values fed into the network and
its output size during search.

However, we do still want to consider the constant propositions which is why we
identify these in the first action input layer of the model and extract their truth values
from the initial state of the task.

4.1.3 Relations

The PDDL task itself is important for the network structure because the relations be-
tween groundings and prior abstract action schemas and predicates need to be determined.
These abstracts 1 do not exist in the SAS+ formalism which is why the PDDL represen-
tation is necessary. Recall that a proposition p ∈ P is said to be related to action a ∈ A
iff p appears either in prea or eff a

2.
The definition of relatedness is used for the sparse connectivity of ASNets, one of

the core components of its architecture. The relations between concrete propositions and
actions can efficiently be derived from relations of the underlying abstract action schemas
and predicates. Therefore, we first compute the relations between abstracts by going
through the preconditions and effects of the action schemas. Each predicate contained
in these, is by definition related to the action schema. Due to the commutativity of the

1In this section, we refer to action schemas and predicates as abstracts in contrast to groundings
standing for instantiated actions and propositions.

2Note that a PDDL domain separates the action properties in preconditions and an effect list which
is why the relatedness is here based on those. This is identical to the definition found in Section 2.4.1
which was based on the STRIPS planning description distinguishing between positive (in the add list)
and negated effects (in the delete list).
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relatedness property, we can directly deduce the relations in both directions. To obtain
relations between grounded propositions and actions, we extract the objects from the
PDDL problem used to instantiate the underlying action schema’ arguments to receive
the actions. These mappings from abstract arguments to objects can be represented as
functions which can be used to also instantiate the related predicates of the action schema
obtaining the propositions related to the instantiated action.

An example for this process in the transport domain for the schema drive(?v −
vehicle, ?from− location, ?to− location) is visualized in Table 4.1.

A = {?v → truck, ?from→ L, ?to→ E}

abstracts groundings

action (schema) drive(?v, ?from, ?to)
A−→ drive(truck, L,E)

related connected(?from, ?to)
A−→ connected(L,E)

predicates/ at(?v, ?from)
A−→ at(truck, L)

propositions at(?v, ?to)
A−→ at(truck, E)

Table 4.1: Illustration of drive(?v−vehicle, ?from− location, ?to− location) instantiated
to the action drive(truck, L,E) using the mapping A from arguments of the action schema
to concrete objects in the task. Below the corresponding instantiation of related predicates
to propositions is shown.

For propositions the related actions are grouped by underlying action schemas for the
pooling operation applied in proposition modules as indicated in Section 2.4.1.

4.2 Keras

Based on the modified PDDL task and the deduced relations, the ASNet model can be
defined. We used Keras [11] with the Tensorflow [1] backend to define and train the
networks. Keras is a python library serving as an API to multiple machine learning
libraries, in our case Tensorflow, offering a modular approach with high-level abstraction.
This makes Keras model definitions comparably simple to read and write as well as easily
extendible. During our experiments, we used Keras version 2.1.6 with Tensorflow 1.8.0.

Generally, the ASNet structure can be separated in action and proposition layers.
While there are action and proposition modules in the respective layers for each grounded
action and proposition, the weights are shared among all modules corresponding to an
instantiation of the same abstract in one layer. Therefore we distinguished between input
layers for each module computing its input tensor and the main module corresponding
to an abstract action schema or predicate holding the respective weights which is reused
among all instantiations of the respective abstract in the given layer. All the following
modules were implemented as custom Keras layers.

4.2.1 Action modules

The input computation for action modules is separated for the first and intermediate
layers. While for action modules in the first layer input values are obtained from the
network’s input, for intermediate layers these are extracted for related propositions out
of the concatenated output of the last proposition layer.
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The following main action module, containing the weights and bias, is shared among
all action modules in one layer which have the same underlying action schema. These
components compute the module output as already outlined in Equation 2.4. However, it
should be noted that action modules in the last action layer prior to the softmax function
output scalar values rather than tensors of the fixed hidden representation size dh and
also avoid applying any nonlinear activation function.

ψl−1

connected(M,E)

at(truck,M)

at(truck, E)

C

drive

f(W l
a · ula + bla) φla

Input layer

Main module

Figure 4.1: Illustration of intermediate action module for drive(truck,M,E) showing the
distinction of input and main module. Note that the input layer is specific for the grounded
action and extracts the necessary output values out of the entire previous proposition layer
output ψl−1. The main module is shared among all modules of actions instantiated from
the drive action schema.

4.2.2 Proposition modules

The proposition modules are split into input and main layers in the same way as action
modules. As there are only intermediate proposition layers, there is no further distinction
needed.

While the general structure of input and main modules for propositions is almost
identical to action modules, pooling operations are applied on all input tensors of related
actions sharing the same underlying action schema. It is possible, that the abstract
predicate of proposition p is related to an action schema for which no instantiated action is
related to p. In this case the pooling operation would be computed among the empty set of
tensors leading to a tensor with only zero entries and the necessary hidden representation
size dh.

In the main proposition module the computation using the weights and bias, shared
among all proposition modules of the same underlying predicate in one layer, is applied.

4.2.3 Softmax output layer

ASNets compute a policy and therefore the final network output needs to be a probability
distribution over the set of actions indicating how likely the network would choose each
action in the state represented by the network input. This is achieved by applying a
masked softmax function to the last action layer output with scalar values for each action.
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φl

drive(truck, L,M)

drive(truck,M,L)

load(truck, package, L)

unload(truck, package, L)

Pool

Pool

Pool

C

at

f(W l
p · vlp + blp) ψlp

Input layer
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Figure 4.2: Illustration of proposition module for at(truck, L). The input layer is entirely
individual for the proposition and extracts the output values of related actions out of the
entire previous action layer output φl. The main module is reused among all modules of
propositions instantiated from the at predicate.

The function additionally uses the input values showing which actions are applicable as
an input mask. The exact formula can be found in Equation 2.6. Its most important
property is that it guarantees zero probabilities for all inapplicable actions. Therefore, a
distribution among all applicable actions only is computed.



Chapter 5

Training

In chapter 4, we explained how to obtain the Action Schema Networks capable of learning
policies for planning tasks. To be able to exploit the networks during search solving prob-
lems of a given domain, we have to acquire knowledge first. This knowledge acquisition is
achieved by training the networks, so we continuously update the parameters θ of ASNets
including the weight matrices and bias vectors with the goal of improving the network
policy guidance. ASNets for a given domain can share the weights because they involve
the same action schemas and predicates defined. Therefore, it is possible to train the
networks on small problem instances from a domain and afterwards exploit its learned
policy on all problem instances based on the same domain. This is essential for ASNets
generalisation capability.

5.1 Training cycle

Our training algorithm is mostly based on the proposed supervised training of Sam Toyer
et al. explained in detail in his thesis [53]. However, we made minor modifications for
the usage in classical planning rather than probabilistic planning which was the focus
of the previous work. The algorithm iterates over Tmax−epochs epochs and trains the
network for each given training problem in Ptrain. Therefore, the network is first build for
the current problem instance and then Tprob−epochs problem epochs are executed. These
involve sampling of states using the network search Sθ and a given teacher search S∗.
This process will be explained in detail in Section 6.1. After the sampling Ttrain−epochs
training epochs over the set of sampled states M are executed to optimise the weights θ
based on M.

5.1.1 Initialisation

As indicated in Algorithm 1, we save and load the already trained weights to reuse them
for all problem networks used during training. However, in the first iteration there are
no weights available yet, i.e. we have to initialize our weight matrices and bias vectors.
Parameter initialization in machine learning applications is a science on its own. We
followed the suggestion of Sam Toyer, using the Glorot or Xavier initialisation [21] to set
our weight matrices values. This initializer has proven to be highly valuable for deep neural
networks, especially when using the RELU activation function (or some modification of
it). It initializes the weights with small values from a zero-centered Gaussian distribution

22
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using an adaptive variance depending on the number of input and output nodes for our
parameters.

The bias vectors are simply initialised with zero values.

Algorithm 1 Training Cycle on set of training problems Ptrain

1: procedure Train(Ptrain)
2: M← ∅ . Sampled states
3: nepoch ← 0 . Epoch counter
4: while nepoch < Tmax−epochs and not early stopping do
5: for all p ∈ Ptrain do
6: asnetp ← Build-Model(p, weights) . ASNet model
7: for np−epoch = 1, ..., Tprob−epochs do . Run problem epochs
8: M← sample(p) . Sample on p
9: train(asnetp,M, Ttrain−epochs) . Train network

10: weights ← asnetp.save weights()
11: M← ∅
12: nepoch ← nepoch + 1

13: function Build-Model(p, weights) . Build ASNet model and load weights
14: task meta ← compute meta(p) . Compute task meta information
15: asnetp ← create model(task meta, p)
16: if weights exist then
17: asnetp.load weights(weights) . Load weights if existing

return asnetp

5.1.2 Epochs

During the training cycle we make use of three levels of iterations. First, we execute
Tmax−epochs epochs in which we train the ASNets for every given problem in our training
set Ptrain. This alternating training on problems allows the networks to continuously
improve the weights without becoming too specialised and therefore also limited to any
of the training problems which is essential for the networks generalisation ability beyond
the training problems in Ptrain.

For each problem p in a epoch, we run Tprob−epochs problem epochs after building the
network for p in which we train the network. The reason for these problem epochs is very
practical. Building the network can take considerable time for problem instances involving
large amounts of grounded actions or propositions. Therefore, it is more efficient to run
multiple sampling and training sessions before going to the next problem for which we
would need to build a network again. Without these problem epochs, we might spend a
large portion of the ”training time” with building ASNet models instead of sampling and
improving our weights based on the obtained samples for some domains.

Lastly, during training we go over the set of sampled training states for Ttrain−epochs
epochs. This is a core technique applied in most training algorithms for neural networks
making the most out of the sampled data. Usually, the sampling process takes significantly
more time than the training steps themselves, so it is important to make noticeable
progress during one training run.
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5.1.3 Early stopping

For some domains, good policies can be learned fairly easy and also quickly. It is unnec-
essary to finish all Tmax−epochs epochs when the network is already performing very well,
so to save computational power and time we use the early stopping criteria suggested
by Sam Toyer. It includes two conditions that have to be met for the training cycle to
terminate early. First, a certain percentage of network searches Sθ during the sampling
process have to be successful, i.e. reaching a goal. Secondly, this success rate should
have not improved by more than 0.01% over the best, previously reached success rate
for a certain amount of epochs. However, it was already mentioned in the thesis of Sam
Toyer that the thresholds might be too restrictive. Therefore, we terminate early when
at least 95% of the network searches reach a goal and the success rate did not improve
by more than 0.01% for 3 epochs or more. For comparisons, in his thesis Sam Toyer used
thresholds of 99.9% and almost no improvements for at least 5 epochs.

5.2 Loss Functions

During the training steps, we try to improve the current weights θ to ensure that ”good”
actions are chosen in the sampled states from M. Mostly, the measure of quality for
action choices is whether the teacher search S∗ used during the sampling process chose
the actions. This is achieved by attempting to minimise a given loss function.

We mainly considered the typical binary crossentropy loss function, which is the nega-
tion of the loss function already proposed by Sam Toyer et al. in their paper about ASNets
[54]:

Lθ(M) =
∑
s∈M

∑
a∈A

−(1− ys,a) · log(1− πθ(a | s))− ys,a · log πθ(a | s) (5.1)

In the function we iterate over all sampled states M and all actions A with πθ(a | s)
being the probability with which the network policy would choose action a in state s. The
binary value ys,a is 1 if action a starts an optimal plan from state s onwards according to
the teacher search S∗. The exact acquisition of these values will be explained in Section
6.1.

The loss function should be reaching its global minimum when the network search
Sθ matches the teacher search S∗ which is our point of reference. Any deviation should
be ”punished” with a higher loss Lθ. When evaluating the loss function, we can analyse
three separate cases:

1. π(a | s) = 0 and ys,a = 0:
In this case our network would never choose the action which is also not considered
optimal by the teacher search. This would lead to the following term in the loss
function:

−(1− 0) · log(1− 0)− 0 · log(0) = −1 · log(1)− 0 · log(0)

= 0

Note, that we consider log(0) not to be −∞ but rather a large negative number
� 0. In the implementation, this is achieved by clipping the network probabilities,
so that they always stay in the interval (0, 1) without ever reaching 0 nor 1. Such a
technique is often necessary for numeric stability avoiding the risk of overflowing or
underflowing numbers. Usually this would also mean, that log(1) is not 0 but a very
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small negative number. We only want to give an intuition why the loss function is
effective for our purpose. Therefore we keep it simple and consider log(1) to be 0.

This evaluation by the loss function seems fitting given that we try to learn optimal
policies according to the teacher search to reach its performance, so we do not want
to choose suboptimal actions.

2. π(a | s) > 0 and ys,a = 0:
Here, the network policy would choose the action a for some non-zero probability
despite a not being labelled optimal by the teacher search. This case should be
punished as we aim to learn only the optimal paths chosen by the teacher search.
The higher the probability to choose the not optimal action a, the higher the loss
should be which is fulfilled by the loss function:

−(1− 0) · log(1− π(a | s))− 0 · log π(a | s) = −log(1− π(a | s))

(1− π(a | s)) ∈ [0; 1], so −log(1− π(a | s)) ∈ [0,∞]. As we can see, the higher the
network probability for a, the closer does 1 − π(a | s) get to 0 leading to a loss of
∞ or a very large loss considering clipping which is the desired effect given that we
do not want to choose suboptimal actions.

3. π(a | s) ≥ 0 and ys,a = 1:
In this third and last case the network probability is larger or equal to 0 for an
optimal action according to the teacher search. Obviously, the higher the network
probability for an optimal action the better. This is represented in the loss function:

−(1− 1) · log(1− π(a | s))− 1 · log π(a | s) = −log(π(a | s))

Similarly to the second case, it can be stated that π(a | s) ∈ [0; 1], so −log(π(a |
s)) ∈ [0,∞] with a zero loss being reached in the case of π(a | s) = 1 which is the
desired outcome.

We implemented a second loss function, which was also included in the implementation
of Sam Toyer 1, closely related to the first binary crossentropy loss:

Lθ(M) =
∑
s∈M

∑
a∈A

−ys,a · log πθ(a | s) (5.2)

This loss only includes the second part of the first loss and therefore exclusively considers
actions with ys,a = 1, i.e. actions which start an optimal plan according to the teacher
search, without directly punishing any probabilities for suboptimal actions.

1The source code of Sam Toyer for the ASNet paper of AAAI’18 is available at
https://github.com/qxcv/asnets
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Fast-Downward Extensions

Our goal is to exploit the acquired knowledge, gained during training, in search based on
the network policy. So far, Fast-Downward did not include policies in its framework which
is why we extended the system with this functionality. Additionally, the sampling process
during the training executes multiple searches to obtain the set of sampled states. These
search executions make use of the Fast-Downward system, which is why the sampling
process itself is implemented in this planning framework.

6.1 Sampling

To be able to train a network based on supervised learning, labelled data, which includes
not only the network input values but usually also the expected outcome, is needed. The
data is necessary to compute loss functions which include the network output, often called
prediction, and the expected output. Obtaining such data is the main challenge whenever
using supervised learning and is achieved by sampling. Therefore generally, a sampling
algorithm aims to collect labelled data used during the following supervised learning.

6.1.1 Sample representation

For ASNets, the collected data must not only include information regarding the state
used as the network input but also all further teacher search information necessary to
compute the loss. With respect to our loss functions mentioned in Section 5.2 we have to
include the ys,a values for the sampled states which indicate whether action a starts an
optimal plan from s according to the teacher search. Therefore, a sample for state s can
be represented by a quadruple (g, ts, as, ys) where all entries form lists of binary values. g
contains values for each fact indicating whether it is part of the planning task goal. The
values in ts show which facts are true in s, the values in as indicate which actions are
applicable in s and ys contains the ys,a value for each action. Note, that g can be shared
among all sampled states for one planning problem.

g, ts and as are used as the input values for the network to receive the probability
distribution from the policy for state s, πθ(s), which together with ys is used to compute
the loss during training.

It is important for the network in- and output that the ordering of the binary values
for facts and actions is consistent among all samples, e.g. the ith binary value of g and ts
have to correspond to the same fact while likewise the jth value of as, ys and πθ(s) must
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refer to the same action. This is achieved by sorting the facts and actions lexicographically
according to their names.

6.1.2 Sampling search algorithm

The sampling search is one of the core components used during the training, outlined in
Section 5.1. The entire sampling process for a given problem p, illustrated in Algorithm
2, can be divided into two phases. First, we explore the problem’s state space by applying
the network search Sθ, which is based on the previously built ASNet and naively follows
its policy. We start at the initial state s0 and follow the most probable action in each
state according to the network’s policy πθ until we either reach a dead-end, an already
encountered state or a goal. Note that expanding a search node of any state for a sec-
ond time would lead to a circle which is why we terminate the exploration in this case.
Afterwards, all states sθ0, ..., s

θ
N along the explored trajectory during search are collected

(represented by extract search states in the pseudocode). For every extracted state the
sample values ts, as and ys need to be acquired (with extract sample values) before the
quadruples are added to the sample data M. The corresponding goal values g for the
given problem are computed beforehand as they are shared among all samples.

The states sampled during this step are essential to improve the network policy for
states already encountered. However, they do not provide reliable guidance towards the
goal, especially not at the beginning of the training process when weights and therefore
πθ is randomly initialized and not trained yet.

To ensure that states forming good trajectories solving the task are identified and
learned, we additionally sample such states by using the teacher search S∗. In this phase,
we start S∗ from all states collected during the previous exploration and similarly to
the first phase sample the goal trajectory. If no goal was found during the search, the
trajectory to the last expanded state will be used instead because it usually represents
the ”closest state to a goal” encountered.

Algorithm 2 Sampling search on problem p

1: function Sample(p) . Sample exploration and teacher search states
2: M← ∅
3: g ← get goal values(p)
4: sθ0, ..., s

θ
N ← extract search states(s0(p),Sθ) . Network exploration

5: for s = sθ0, ..., s
θ
N do

6: (ts, as, ys) ← extract sample values(p, s)
7: M←M∪ {(g, ts, as, ys)}
8: for sθ = sθ0, ..., s

θ
N do . Teacher sampling

9: s∗0, ..., s
∗
N ← extract search states(sθ,S∗)

10: for s = s∗0, ..., s
∗
N do

11: (ts, as, ys) ← extract sample values(p, s)
12: M←M∪ {(g, ts, as, ys)}
13: returnM

While the extraction of the sample values g, ts and as is straight forward and only
requires looking up fact values in the goal set, s or checking which actions are applicable,
obtaining the ys,a values for s is less trivial. In order to determine which actions start an
optimal plan, with respect to S∗, we first compute a plan from s onwards with S∗ and
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store its cost costs. For each applicable action a in s we then extract the state s′ reached
by applying a to s and execute a teacher search from s′, again storing the cost costs′ . If
costs′ + cost(a) ≤ costs then choosing action a in state s did not increase the plan cost
according to S∗, i.e. a starts an optimal plan with respect to S∗ and therefore ys,a = 1.
Otherwise, a does not start an optimal plan of S∗ or is not even applicable. In both these
cases we set ys,a = 0.

6.1.3 Teacher search

One of the main advantages of this sampling search is its flexibility because it can be
used with an arbitrary search configuration implemented in the Fast-Downward planning
system. Due to the popularity of Fast-Downward for heuristic search planners, many
heuristic functions and search engines were already implemented and can therefore directly
be used as guidance in the sampling search. In contrast, Sam Toyer used a teacher policy
for the probabilistic planning application. Using a teacher policy instead of an entire
search would also be possible for classical planning, but only limit the approach and
therefore does not seem expedient.

6.2 Policies and Search

However, for the integration of ASNets in Fast-Downward it is necessary to implement
policies representing the network output of ASNets. Previously, the classical planning
Fast-Downward system only considered heuristic functions as valid evaluators used for
guidance during search. We extended the system with a general framework for policies as
a second form of evaluation simplifying any further additions of policies.

6.2.1 Policies in Fast-Downward

We decided to integrate policies in Fast-Downward based on the already existing concept
of preferred operators. These could previously be computed by heuristic functions and
e.g. indicate which actions should be prioritized during search. We extended this concept
with further preferences which can be provided but are not mandatory.

For policies, we simply provide the preferred operators in evaluation results as the
actions considered by the policy and give the action probabilities as the corresponding
preferences. If no such preferences are given, the actions will all be treated uniformly
distributed, i.e. they are all equally probable.

Network policy

For the specific case of ASNets, a network policy was implemented which serves as an
interface to network classes computing policies. For ASNets, we provide a network rep-
resentation in the Fast-Downward framework which is able to feed input values into a
Protobuf network containing an ASNet model. Similarly, the ASNet network is also ca-
pable of extracting the computed network output out of the Protobuf model. Whenever
an ASNet policy is used, we first construct the corresponding Protobuf network file out of
the built Keras model. Afterwards, the ASNet representation in Fast-Downward serves
as an interface to the built Protobuf model and feeds input values into the network as
well as extracting its output as requested by the network policy.
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6.2.2 Policy search

Lastly, we needed a new search engine for policies as all currently available searches in
Fast-Downward are based on heuristic functions. The policy search implemented is a
naive approach and simply follows the most probable action for each state according
to the given policy. While this search is very simple and potentially limits the results
achieved, it is also solely reliant on the policy. Therefore, using such a naive search with
the ASNet policy allows us to purely evaluate the performance and quality of the given
network policy. However, it will certainly be of interest in the future to combine network
policies with already established and new approaches in more sophisticated searches for
classical planning.



Chapter 7

Evaluation

We defined Action Schema Networks using Keras, integrated them into the Fast-Downward
system and proposed a slightly modified training algorithm for application in classical
planning. Now, we will evaluate the performance of ASNets for this planning field.

As stated in Section 2.4.3, Sam Toyer already conducted an empirical evaluation of
the ASNet performance but focused on the probabilistic planning branch. While he also
considered classical planning, comparing ASNets to multiple baseline planners, this ex-
periment was only performed for the Gripper domain which is solved fairly easily by most
considered planners if not all. Therefore, we will conduct an extensive empirical evalua-
tion for ASNets in classical planning considering multiple domains of varying complexity
and comparing the performance to successful planners from the optimal and satisficing
planning branch.

7.1 Evaluation objective

During the experiment and its evaluation, we will address the following questions regard-
ing the suitability of ASNets:

1. Are ASNets able to learn good and potentially even optimal policies with
respect to the teacher search?
We will use optimal and satisficing search configurations as teacher searches during
the sampling process. While we expect that the quality of ASNet policies will
depend on the quality of the plans found by the teacher search, it is of great interest
to observe to which extent the network policies can keep up with the teacher search.

2. On which domains do ASNets perform well?
While this question seems trivial once the results of the experiments are presented,
it is important to find common properties or concepts shared among domains on
which ASNets perform especially well or disappointing. Such findings can help
making further progress in improving learning techniques for automated planning
as a whole.

3. For which period of time do we need to train ASNets until they perform
reasonably well?
To which extent does the needed time vary among domains and eventually used
teacher searches? It can be assumed that the necessary training time varies signifi-
cantly depending on the used configuration and planning domain. Additionally, we
will observe whether longer training necessarily improves the network performance.

30



7.2. EVALUATION SETUP 31

All these questions will be addressed during the evaluation of the experiment and
should be kept in mind throughout the chapter.

7.2 Evaluation Setup

The entire evaluation for all baseline planners and trained ASNets as well as the training
itself was conducted on a x86-64 server with each process using a single core of a Intel
Xeon E5-2650 v4 CPU clocked at 2.2GHz and 96GiB of RAM.

7.2.1 Domains and Problems

To be able to reliably evaluate ASNets for the classical planning field, we use eight domains
with different characteristics and difficulties. These are mostly from previous iterations
of the International Planning Competition (IPC) and the FF-Domain collection1 of Prof.
Dr. Hoffmann. In the following paragraphs, we will provide a brief description for each
domain used during the evaluation and state our expectation regarding the difficulty of
policy learning.

Blocksworld The Blocksworld domain describes problems in which blocks on a table
need to be stacked to match a certain formation. Blocks can be stacked on top of other
blocks or lay on the table. In order to rearrange the blocks, a gripper arm is used. It can
grab any blocks, which do not have another stacked on top of them, and put them down on
the table or stack them on top of another block. The initial state of Blocksworld problems
describes the starting arrangement while the goal specifies relations among blocks which
have to be fulfilled.

We use the 35 problem instances used in track 1 of the IPC 2000, which involve
problem instances with 4 up to 17 blocks, for the evaluation and train the ASNets on
three instances with 4 blocks only.

Generally, there exist fairly simple strategies for solving Blocksworld problems. E.g.
one can always unstack all blocks until they lie on the table. From there, it is trivial
to just stack the blocks until we have built the configuration specified in the goal. This
mostly does not result in an optimal plan, but can be applied for any arbitrary initial
arrangement. However, none of the usual heuristic searches used as teachers or in the
baseline planners make use of these strategies which is why we do not expect the network
policy to learn such an approach. It most likely will try to recreate the plan construction
used by the teacher search and learning this might be too challenging given that these
will not necessarily include one simple approach to all situations but operate adaptively.

Elevator The Elevator domain illustrates transportation problems in which passengers
have to be moved to specific floors in a building by using elevators. There are slow and
fast elevators where the slower ones only move inside a block of floors and the faster ones
skip floors. There is also limited capacity specified for each group of elevators and the
cost involved with the elevator movements is different for fast and slow elevators.

All problem instances are taken from the sequential satisficing track from IPC 2008 and
include two fast elevators. Finding optimal plans for Elevator problems is especially hard
because the movement cost and schemes of slow and fast elevators varies. The acceleration

1The FF Domain collection is available at https://fai.cs.uni-saarland.de/hoffmann/ff-domains.html
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of slow elevators is costly but therefore their movement is considerably cheaper for each
floor compared to the fast elevators whose acceleration is quicker. For the evaluation, we
use 30 problem instances which can be grouped into 3 levels of difficulty:

1. Problem d-01 to d-10 :
These problems include 8 floors split into two blocks where one slow elevator moves
in floors 0 to 4 and the second slow elevator in floors 4 to 8. The fast elevators move
2 floors at a time and therefore only serve even floor numbers. Slow elevators only
fit 2 passengers while faster ones can carry up to 3 passengers at a time.

2. Problem d-11 to d-20 :
These problems include 16 floors split into two blocks where one slow elevator moves
in floors 0 to 8 and the second from floor 8 up to 16. The fast elevators move 4
floors at a time and therefore only serve floors 0, 4, 8, 12 and 16. Slow elevators fit
3 passengers and the faster ones can carry up to 4 people at a time.

3. Problem d-21 to d-30 :
These problems include 24 floors split into three blocks with one slow elevator each
moving in blocks 0 to 8, 8 to 16 and 16 to 24. The fast elevators move 4 floors at a
time. Slow elevators fit 4 people while the faster ones can carry up to 6 passengers
at a time.

Learning for the Elevator problems seems very hard as there is no straight-forward
policy which can easily be learned or is followed by any of the planners.

Floortile In the Floortile domain, robots have to paint specific patterns in a grid. They
can move in all four directions but only paint tiles up- or downwards and can not stand
on painted tiles. In the used problem instances, there are two robots which have to paint
an alternating chess-like pattern in black and white. Initially, no tiles are coloured yet.
The grid for problem d-xy-z has the size (x + 1) × y and all but the bottom row has to
be coloured in the pattern (z is just a counter to distinguish multiple problems of equal
size).

This particular configuration is interesting because it contains many dead-ends in
which uncoloured tiles can not be reached any more from the top or bottom side. The
robots have to start at the top side of the grid and only paint tiles above them. Whenever
a robot paints a tile below him, the task becomes unsolvable.

All problem instances used in the evaluation are from the sequential optimal planning
track at IPC 2014 and include grids of size 5 × 3 up to 7 × 5. Due to the dead-ends,
we assume that this domain will be hard for most planners and especially the ASNet
policy search because it only naively follows the network policy. Therefore, the search
fails whenever the policy leads into a dead-end and we do not expect that the network
policy will be able to entirely circumvent any dead-ends. Furthermore, this might limit
the training speed significantly because the network exploration during the sampling will
often end up in dead-ends and as a consequence only explore comparably few states.

Hanoi The Hanoi domain encodes problems of the Towers of Hanoi task where disks
of varying size have to be stacked on pegs. The difficulty comes from the fact that all
discs can only be placed on top of larger disks or on top of the pegs. Initially the tower
consisting of all disks is stacked on one peg and has to be transferred to another base.
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All 20 problem instances were generated with the FF-Domain generator. Problem d-x
contains x disks and all instances contain three pegs as the foundation.

While there exist strategies that can be applied to arbitrary Hanoi problems and solve
them, the domain is still not trivial for modern planners. This is primarily due to the
minimum number of moves required to solve an Hanoi instance. The shortest existing
solution for a Tower of Hanoi puzzle with n disks has 2n − 1 moves. Despite this length
of plans, we suppose that ASNets might be able to learn a policy for Hanoi problems
because its solutions are based on repetitive patterns which are applied for all disks. This
potentially simplifies learning a policy.

ParcPrinter The ParcPrinter domain models printing tasks executed on a multi-engine
printer which is capable of processing multiple jobs simultaneously. The printer uses sev-
eral Image Marking Engines (IME) which can be limited to black-and-white printing or
able to print in colour. During the processing of one sheet, various printer components
need to be handled including a feeder, transporter, inverter, finisher and the IMEs them-
selves. In the end, the sheets have to be stacked in the correct order. ParcPrinter tasks
are very complex due to the many components, which have to be handled, each with their
own constraints. Additionally IMEs are capable of varying their speed which further
complicates the scheduling.

We use 10 problem files of the 2008 sequential optimal IPC track. The problem
difficulty is varied with the amount of images and sheets processed for the task. The
ParcPrinter instance d-x includes x sheets and images which need to be printed on top
of the corresponding sheets. The necessary colour is varied among the tasks.

Overall, ParcPrinter problems are very complex. Due to their variability and many
components, we do not expect that ASNets are capable of learning policies which gener-
alise well and therefore can be applied to problems outside the used training instances.

Sokoban Sokoban originally is a japanese computer game developed by Hiroyuki Imaba-
yashi which was published in 1982. In the game, the player has to move objects on
predefined goal locations in a given map by pushing them forward. The objects can only
be pushed if the field behind is empty. Usually, the maps contain many walls blocking
potential paths.

We use 30 problem instances from the sequential satisficing planning track of IPC 2008.
These do not share a common difficulty measure but are still ordered in a meaningful way
representing the expected complexity. E.g. instance d-10 only includes a single box
which needs to be moved but the map is significantly larger than for most problems and
is arranged like a maze.

Sokoban does not include many different actions or patterns like e.g. the ParcPrinter
domain. However, the problem instances can be constructed in various ways and as a
consequence demand different strategies. We expect that ASNets are able to solve some
larger problem instances after training which require a shared approach but they will
probably not be able to generalise well on problem instances demanding other strategies.

TurnAndOpen The TurnAndOpen domain is closely related to the Gripper problems
previously used by Sam Toyer for his evaluation of ASNets in classical planning. It
contains robots with two gripper arms each which have to carry balls across rooms. In
contrast to the Gripper domain, the rooms are connected by doors which need to be
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opened first. Opening a door requires two free hands to turn the doorknob and opening
the door simultaneously.

We use 19 problem instances of IPC 2014. However, we needed to slightly alter the
domain and problem files as these were built for the temporal satisficing planning track.
We removed temporal conditions and replaced duration measures for actions with costs.
The problem instances contained between two robots, eight rooms and ten balls up to
five robots, fourteen rooms and sixty balls.

Generally, we consider this domain to be fairly easy. The Gripper domain is very
simple and the addition of doors which need to be opened does not seem complex. Also,
one can exploit the same strategy on all TurnAndOpen problems independently of the
number of robots, rooms or balls. Therefore, we expect that ASNets are capable of
learning policies and generalise well on this domain.

Tyreworld The Tyreworld domain describes problems in which flat tyres have to be
replaced by new ones. In order to do so one has to get all necessary tools, remove the
nuts and assembly the new tyre.

We generated problem instances of size one up to twenty with the respective FF-
Domain generator. The problem size for Tyreworld instances represents the number of
tyres, which need to be replaced.

Problems of this domain can be considered simple because the same steps are used for
each tyre. Therefore, the network is only required to learn this process for a single tyre
and then should be able to perform well on further instances.

Domain number of
evaluation
problems

number of
training
problems

expected difficulty

Blocksworld 35 3 hard
Elevator 30 1 hard
Floortile 20 1 mediocre - hard
Hanoi 20 3 mediocre
ParcPrinter 10 4 hard
Sokoban 30 2 simple - mediocre
TurnAndOpen 19 3 simple
Tyreworld 20 2 simple

Table 7.1: Overview over all domains and our expectation regarding the difficulty

7.2.2 Baseline Planners

In order to conclusively evaluate the performance of ASNets, we will compare it to com-
petitive baseline planners for classical planning. These are all based on heuristic search
being the dominant approach in this planning field. The baseline planners are imple-
mented in the Fast-Downward planning system and their search time for each problem
during the evaluation will be limited at 30 minutes.

A∗ with hLM−cut, hadd The A∗ heuristic search maintains a prioritized open list con-
taining states ordered by their f-value which is the sum of the cost g(s) to reach the state
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and the heuristic value h(s). Initially, the open list only contains the initial state. In
each following iteration, the state with the lowest f-value is expanded. If it is a goal,
the search is terminating and found a solution. Otherwise all states reachable from ac-
tions applicable in the state are collected and added to the open list with their respective
f-value. However, if a state was already found previously it is not added again to the
open list. Should the open list be empty at the beginning of an iteration then the task is
unsolvable. This search algorithm is almost exclusively used in optimal planning because
it guarantees optimal plans whenever used with an admissible heuristic [23]. Due to its
generally expensive computation, it is rarely seen in non-optimal planning.

In our evaluation, we use this search with the admissible LM-cut heuristic hLM−cut

introduced by Helmert and Domshlak in 2009 [26] as well as the additive heuristic hadd

by Bonet and Geffner [7]. Note, that hadd is not admissible and therefore A∗ with this
heuristic will not necessarily provide optimal solutions.

Greedy best-first search with hFF Greedy best-first search (GBFS) is the satisficing
twin of A∗ proposed by Russell and Norvig [47]. The algorithms are closely related as
they share the same structure with the only difference being the values used for open list
ordering. While A∗ uses the more informative f-values, GBFS solely relies on the heuristic
values. Despite this seemingly minor difference, the algorithms share almost no use-cases
because GBFS looses the optimality guarantee from A∗ due to not considering the g cost
values. However, it is significantly faster for most domains whenever using an informative
heuristic. Therefore, it is a popular heuristic search approach for satisficing planning.

We use greedy best-first search in our evaluation with the relaxed plan heuristic hFF [27]
using a dual-queue with preferred operators.

LAMA-2011 The LAMA-2011 planning system [44] was one of the winners at the 2011
IPC. It combines various approaches from the previous search engines. First, the LAMA
planner conducts greedy best-first searches combining the relaxed plan heuristic with
landmark heuristics [43] and also using a dual-queue of preferred operators. The goal of
this search is to quickly find a plan. Afterwards multiple iterations of (weighted) A∗ using
the same heuristics and pruning strategies are run repeatedly until a guaranteed optimal
plan is found or the time limit is reached. Weighted A∗ in contrast to “pure” A∗ multiplies
the heuristic values on states with the given weight before adding the costs. For weights
> 1 weighted A∗ does not guarantee optimality (even for admissible heuristics) but serves
as a middle ground between the fast greedy best-first search and typical A∗ providing
optimal solution quality. Therefore, the LAMA planner executes multiple iterations with
the weighted search and steadily decreases the weight until pure A∗ is used. This approach
allows the LAMA planner to find reasonable plans very quickly and steadily improve the
plan quality until an optimal solution is found or the time limit for the search is reached.

7.2.3 ASNet Configurations

For all empirical evaluations we will use the same ASNet configuration with a hidden
representation size dh = 16 and two layers, i.e. three action layers and two proposition
layers, already used by Sam Toyer. This also includes the ELU activation function. To
minimize the risk of overfitting, we apply L2-regularization to all modules in intermediate
layers with λ = 0.001 as well as dropout with a probability of p = 0.25.
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During the training of our ASNets, we use up to Tmax−epochs = 10 epochs with each
executing Tprob−epochs = 3 problem epochs. Alternatively, we also terminate whenever the
early stopping criteria described in Section 5.1.3 is met or the soft time limit of two hours
is exceeded. This time limitation is checked at the beginning of each problem epoch,
but we do not interrupt currently running sampling searches or training steps. Similarly,
the network creation for each problem evaluated was limited at one hour, so that if the
process took over an hour for one problem instance the following larger problems would
not be processed.

It is worth noting, that we accumulate our samples for one problem in each epoch, i.e.
we use the sampled data for every of the three sequential problem epochs.

For the training, we apply Ttrain−epochs = 100 training epochs in each training call for
which we use the Adam optimizer with a learning rate of α = 0.001. As the loss function
we use our proposed binary crossentropy loss outlined and explained in Section 5.2.

As teacher searches we use three different search configurations. As an optimal teacher
search, we use A∗ with hLM−cut while for satisficing planning A∗ with hadd and greedy
best-first search with hFF and a dual-queue of preferred operators are used.

7.2.4 Metrics

We want to be able to compare the ASNet performance with the baseline planners. There-
fore, we provide detailed metrics which can be analysed. For each evaluated domain, we
will provide the coverage indicating how many of the problems in the domain were solved
by each planner. Additionally, we will track the cost of plans and search time for every
solved problem. In the case of the network evaluation, we will also include the time spent
to create the model used in the following search.

In the training process of ASNets for each domain, we will measure the development of
the loss throughout the training and provide the time spent in each phase of the training
cycle, so how much time was spent during model creation, sampling and training epochs.
Lastly, we will observe the success rate of the network search in the sampling process
during training indicating the percentage of solved problems to check whether the ASNets
were already able to perform well early and if this translates to good performance in the
evaluation thereafter. Notice however, that the success rate indicates how many problems
were solved during the sampling, which happens immediately after the training for the
given problem. Therefore, the success rate does not necessarily reflect the percentage
of training problems the network would solve after the entire epoch but will usually
overestimate the network performance.

The entire set of tables including these metrics can be found in the appendix.

7.3 Results

In this section, we will outline the performance of all baseline and ASNet planners for
the evaluated domains and provide an analysis regarding visible or assumed shortcomings
wherever possible. For all domains, we will first look at the data already collected during
training followed up with the performance on all problem instances. The entire data set
in more detail regarding the training can be found in the appendix A, while the evaluation
tables can be found in appendix B.
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7.3.1 Domains

Blocksworld The training data for the Blocksworld domain implies convincing perfor-
mance given that all ten epochs were finished after about 45 minutes for each network
configuration. A stable success rate, i.e. percentage of problem instances solved by the
network exploration during the sampling, of 70 to 80 percent was reached for all training
configurations after the third epoch at latest. It is also worth noting that the predomi-
nant time consumption during the entire training process were the training epochs taking
considerably more time than the sampling search or the network constructions.

Despite this positive data during training, all ASNets were only able to generalise to
some extent. The networks solved all instances already used during training but only
few problems outside the training set. The configurations trained with an A∗ teacher
performed better in terms of plan quality, which is to be expected, and number of solved
problems. All baseline planners solved significantly more problem instances in mostly
shorter amount of time.

Domain A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Coverage 28/35 35/35 35/35 35/35 7/35 7/35 4/35

Table 7.2: Coverage for evaluated Blocksworld Domain

For most solved problem instances, the cost of plans found by the ASNet policies were
identical to the ones of their respective teacher searches. In some cases, the plan quality
was worse but rarely even better. For problem instance d-13-1 the best plan was found
by the ASNet trained with the optimal A∗ hLM−cut teacher search. The search itself did
not terminate and even the LAMA planner was seemingly unable to reach an optimal
solution in the given time.

However, no common property among problem instances solved by the networks could
be found. As expected, the approaches needed to solve Blocksworld tasks are too diverse.
Therefore, the networks are unable to learn a single policy which performs well on the
majority of instances in this domain.

Elevator Already the training for the Elevator domain was entirely unsuccessful. Only
up to three epochs could be finished in the given two hours but not a single problem could
be solved during training. It seems that our expectation was correct that instances of this
domain would be too complicated and diverse to learn a single policy which is capable
of solving problems. Therefore, the ASNets were all unable to solve any problems during
the evaluation.

Domain A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Coverage 2/30 15/30 30/30 30/30 0/30 0/30 0/30

Table 7.3: Coverage for evaluated Elevator Domain

The trajectories of the network exploration confirm our observation. All networks
only did small progress during the problem epochs on one problem trying to follow the
teacher search solution which was insufficient to solve even the single problem used during
training.
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Floortile The Floortile domain was considerably more difficult for all planners. While
the A∗ hadd baseline planner solved all twenty problem instances, the other planners were
incapable of solving even half of the problem instances with the given time limitation.

This performance of the teacher searches clearly translated to the network policies.
Only a single epoch of training could be finished with the A∗ hLM−cut and GBFS hFF

teacher searches due to the duration of the sampling search. While the ASNet using A∗

with the inadmissible hadd was able to finish four epochs, even this network policy was
unable to generalise at all. It was only able to solve a single problem, which was not even
the instance used during training.

Domain A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Coverage 6/20 20/20 9/20 9/20 0/20 1/20 0/20

Table 7.4: Coverage for evaluated Floortile Domain

The actions applied by the network policies during search with the corresponding tra-
jectories imply that the inability to solve Floortile problems was not caused by reaching
dead-ends, as we first expected. The networks were all able to learn to only paint tiles
above them. However, it seems that the policy was indecisive regarding the movement
of robots leading to almost identical probabilities for the move actions which as a con-
sequence were often reverted with the invertible actions leading to an already explored
state, so the search terminated. Therefore, it can be stated that the networks were able
to learn some approach for this domain despite the performance of the teacher searches,
but invertible actions seem to be an issue for ASNets with our current approach.

Hanoi Training for the Tower of Hanoi domain went comparably to Blocksworld. The
most time during training was used for the training epochs with a stable success rate
among all configurations finishing all epochs in just half an hour.

Domain A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Coverage 13/20 15/20 16/20 15/20 3/20 2/20 2/20

Table 7.5: Coverage for evaluated Hanoi Domain

However, the networks did not generalise outside the training set at all. While the
three instances used for training were almost all solved by the different ASNets, not one
problem beyond was solved by the network policies. It seems that the networks do not
recognize the repetitive pattern of Hanoi and are therefore only able to replicate the
exact same actions seen during training. While the same strategy can be applied to all
Hanoi tasks, the necessary action pattern increases in size for growing problems despite
its structure remaining. This minor gradual change in the action patterns seems to be
too complicated for ASNets to learn. As a consequence, the network is too uncertain
regarding the actions needed and often undoes its steps ending in already explored states
which terminates the search early.

ParcPrinter Training performed on the ParcPrinter domain seemed successful. While
not all ten epochs could be finished in two hours, the success rate was stable above 70
percent from the second epoch onwards and neither network construction nor sampling
required major time.
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ASNets trained with A∗ teacher searches performed very poorly in the evaluation.
Only the smallest problem instance was solved, which is disappointing given that four
problem instances were already frequently solved during training. The network search
trained with GBFS and the FF-heuristic was able to solve two out of four ParcPrinter
tasks used for training and two larger instances with the exact same plan quality as its
teacher search. The baseline planners all outperformed even the best ASNet search.

Domain A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Coverage 6/10 8/10 10/10 10/10 1/10 1/10 4/10

Table 7.6: Coverage for evaluated ParcPrinter Domain

Usually, one would assume that the improved performance of the ASNet trained with
the significantly faster GBFS from the satisficing planning branch was caused by its more
efficient sampling and training. However, all training problems were solved by all three
teacher searches in under 0.02s, so while GBFS is faster, the search time did not seem to
be the limiting factor for any ASNet configuration.

When looking at the trajectories during search, it can be observed that whenever
the network search failed, the policy printed an image on the wrong sheet leading to a
dead-end. The network was simply not confident enough in its decision regarding the
printing of images on corresponding sheets. Still, the networks were able to learn large
parts of the strategy needed to solve ParcPrinter tasks. They performed the scheduling
of the processes involving the ordering of sheets and selecting the correct colour-schemes
almost perfectly. It seems that the uncertainty regarding the printing of images and
corresponding sheets in the network policies led to the disappointing performance during
evaluation.

Sokoban The Sokoban domain was entirely unsuccessful for ASNets. While the sam-
pling search did not demand an overwhelming amount of time as for the Floortile domain,
not a single problem was solved during up to six epochs across all configurations. It seems,
they were entirely unable to learn any policy at all and therefore it is no surprise that
they also did not solve any instances during the evaluation.

Domain A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Coverage 28/30 29/30 29/30 29/30 0/30 0/30 0/30

Table 7.7: Coverage for evaluated Sokoban Domain

The actions applied by the policy indicate a similar behaviour and issue as for the
Floortile domain. In many situations the network had to choose between multiple move-
ment actions which were all assigned almost identical probabilities. Additionally, after
applying one move action the network frequently moves back again ending in an already
explored state and terminating the search.

This might have several reasons. It could be that ASNets are incapable of reliably
deciding on one path when multiple of equal quality exist. But on some problem instances
it seems like only a single path towards any progress exists and is still not chosen or at
least followed until the mentioned progress towards the goal. Another reasons might be
the limited receptive field of ASNets as we only used networks with three action and two
proposition layers, so they might not be able to recognize the upcoming progress as it is
too far away still.
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TurnAndOpen The TurnAndOpent domain was arguably the worst performing for
ASNets. Due to the inability of the A∗ hLM−cut search to solve even the smallest problem
in the 30 minutes time limitation, it is not surprising that the ASNet trained with such
a teacher search was incapable of progressing. We terminated the training after the first
sampling search took already over nine hours. While we finished the training for the other
two configurations, it did not look considerably better either, only finishing a single epoch
without any successful network explorations. The single epoch took almost three hours
for the GBFS trained ASNet and nearly four hours for the A∗ hadd teacher network.

Domain A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Coverage 0/19 17/19 15/19 19/19 0/19 0/19 0/19

Table 7.8: Coverage for evaluated TurnAndOpen Domain

However, the applied actions show a similar weakness as in the Floortile or Sokoban
domain. The networks successfully learned to open doors first and carrying the balls to
their destinations afterwards but in the end failed when they applied an inverted action
going back to the previous state.

Tyreworld Training on the Tyreworld domain was interesting in multiple ways. First,
it is the only domain in which training stopped due to the early stopping criteria, i.e.
the success rate was 100% from the second or third epoch until termination. Secondly,
a significant difference in time distribution for all configurations can be observed. While
training with the GBFS hFF teacher search terminated after about 20 minutes with most
time spend in training epochs, the sampling search with the A∗ hLM−cut teacher took
45 minutes itself across all epochs and was the predominant time during training. The
ASNet using the hadd teacher search lies in between.

Domain A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Coverage 3/20 6/20 20/20 20/20 20/20 0/20 20/20

Table 7.9: Coverage for evaluated Tyreworld Domain

The impressive performance during training also translated to the evaluation for AS-
Nets trained with the GBFS and LM-cut teacher search. These ASNet policies were able
to solve every problem of this domain significantly outperforming A∗ with LM-cut itself
which only terminated for the first three out of twenty problem instances. The plan qual-
ity was identical to GBFS hFF and the LAMA planner. While GBFS was considerably
faster than the ASNet, the network search terminated earlier than the LAMA planner
which did not finish all its iterations.

However, the ASNet trained with the hadd teacher search, which performed almost
identical during training, was incapable of solving any problem instance including the ones
already solved during training. After inspecting the trajectories of this ASNet policy, it
appears that it was comparable to the other two but with minor confidence. The network
policy failed due to applying repetitive actions at the very end of the plan when putting
away the used tools. Hence, the search reached a state already explored and terminated
without finding a solution. It is unclear, why the policy was able to apply the correct
actions during the training process and failed thereafter.
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7.3.2 Interpretation

For the interpretation of our evaluation and the assessment, we will answer the initial
questions posed in Section 7.1.

1. Are ASNets able to learn good and potentially even optimal policies with
respect to the teacher search? ASNets do learn close to optimal policies in almost all
cases with respect to their teacher search if a solution has been found at all. Sometimes,
they even improved upon their (non-optimal) teacher performance. While this is the case,
the network search was unable to solve the majority of evaluated problem instances across
the domains. The Tyreworld domain was the only exception for which ASNets performed
very well (for two configurations). Besides, the network search was able to generalise to
some extent on the Blocksworld domain as well as for the ParcPrinter domain for the
networks trained with the GBFS hFF teacher. Outside of these domains, the networks
failed to generalise at all, sometimes they did not even solve the problems used during
training.

2. On which domains do ASNets perform well? Looking at the evaluation result,
ASNets only performed well on the Tyreworld domain. However, the whole answer is
not as simple and therefore we will look at all domains grouped by performance during
training and evaluation in more detail.

The training already indicated poor performance in the case of the Elevator, Floortile,
Sokoban and TurnAndOpen domains. In the case of Sokoban and Elevator, the networks
were incapable of solving any problems during the sampling search despite finishing mul-
tiple epochs. For the Floortile domain, the teacher searches A∗ with LM-cut and GBFS
with FF were too expensive on even the smallest instance used for training with the same
problem occurring with the LM-cut teacher on the TurnAndOpen domain. Therefore, this
training could hardly be successfull. While the A∗ hadd teacher was significantly faster for
Floortile and the network solved the training problem over the epochs during training,
the ASNet was still unable to solve any problems during the evaluation including the
instance used for training.

The actions applied by the network policy during evaluation for Floortile, Sokoban
and TurnAndOpen problems indicate a similar difficulty. Unlike previously expected,
dead-ends in the Floortile domain were not the main issue. The network was indecisive
regarding movement for all those domains, frequently reverting its own actions with the
inverted action leading to an already explored state. Such behaviour has likely multiple
reasons. It can be assumed that the receptive field and length of action chains possibly
considered by the network due to its limited depth is one problem. Another is the fact
that move actions are often applied on a larger field, so there are multiple paths towards
to the goal which can be chosen interchangeably. It would be logical for the network to
assign the actions leading to any of the paths with (almost) equal probabilities. These
can lead to indecisiveness of ASNets and as a consequence the risk of inverting its own
action arises.

It appears that these situations closely relate to the concept of symmetry which is an
already established problem in automated planning with multiple approaches proposed by
research during the last two decades [20, 16]. There exist multiple pruning techniques to
remove symmetric parts of the state space. These could be applied in a more sophisticated
search based on ASNet policies which might improve the performance in domains as
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Floortile, Sokoban and TurnAndOpen.

The limitation of the receptive field of ASNets can partly be overcome by additional
input features, as already successfully applied by Sam Toyer in his work.

For the domains Blocksworld, Hanoi and ParcPrinter the ASNets were able to perform
well during training but mostly did not generalise to problems beyond the training set.
It seems that solutions for Blocksworld problems are too diverse, so that the networks
are incapable of finding a single policy with the help of the teacher search which is able
to solve all tasks. One could try to teach ASNets a simple strategy where first all blocks
are unstacked and thereafter stacked to the towers as described in the goal. It would be
interesting to observe the learning and generalisation ability for such a case, but none
of the used teacher searches make use of a comparable, repetitive approach. A similar
problem occurs for the Hanoi domain. While generally speaking the same strategy is
applied to all Hanoi problems, it involves a chain of actions growing for larger instances.
Despite the remaining pattern, the networks are not able to recognize and learn the
repetitive structure and therefore do not generalise at all.

The ParcPrinter domain is very different. The task itself is very complex and challenges
the baseline planners, due to its large amount of different action schemas and patterns
which have to be processed. However, it is important to note that these various situations,
which have to be dealt with when solving a ParcPrinter instance, can always be solved
with the exact same action sequence after considering the properties like e.g. using colour
when printing instead of black and white. We originally assumed that the variety of
these tasks would be too challenging for ASNets. It turns out, that they were able to
learn the scheduling almost perfectly. The only prominent issue, preventing the network
policies from solving further problems, was its indecisiveness whenever printing the correct
image on the corresponding sheet. In this situation, the network frequently chose the
wrong image. It is unclear, why the network is capable of choosing the correct patterns
beforehand but not in this last step to fulfil goal propositions.

Lastly, the Tyreworld domain should be looked at as the positive example of a domain,
ASNets are not just successful during training but generalise well on. One major reason
is certainly the repetitious pattern for changing one tyre which identically translates
to all further tyres. While this also leads to many symmetries, as the tyres can be
handled in an arbitrary order, these do not seem problematic because the network does
not necessarily need to decide on one path and strictly follow it. There are merely various
subproblems which have to be solved and are mostly independent from each other. E.g.
at the beginning it does not matter in which order the tools are picked as long as all are
picked before the network starts working on the tyres and the tyres can all be replaced
independently. This can also be seen in the ASNet policy probabilities. These are almost
identical for all tyres at the beginning and the network as a consequence arbitrarily chooses
one but as this decision is not of significance for solving the task, any indecisiveness is
not harming the network performance.

However, even for the Tyreworld domain ASNets are not perfect. While the networks
are able to find good solutions for all problem instances, the search still takes significantly
longer than the GBFS with the FF-heuristic. Additionally, the main time spent to be
able to evaluate the network for these problems is used to build the ASNet models. One
shortcoming of the current implementation of ASNets lies in the model creation and
processing. ASNets contain one module for each grounding by definition which can lead
to enormous networks expensive to create and do any computations with. This limits the
training and evaluation alike due to memory and time consumption. It is still important
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Figure 7.1: Network creation time with respect to the number of groundings
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Figure 7.2: Protobuf network size with respect to the number of groundings

to note, that this limitation does not necessarily lead to poor training or generalisation,
because the Tyreworld problems contain many groundings and ASNets performed best
on this domain, but it is an issue with respect to scaling which should be addressed.

Figures 7.1 and 7.2 illustrate the scaling of the Protobuf network file size as well as the
time needed to construct the models. It can be seen that most problems in the domains
contain up to thousand groundings but there are a few domains like Tyreworld, Elevator
and TurnAndOpen whose inherent structure leads to an immense increase of groundings
for larger problem instances. It should be emphasized that these networks need to be
constructed for each single problem before the network policy can be exploited during
search. For domains with a large amount of groundings, this can take considerably more
time than the training process for the entire domain which is certainly suboptimal.

3. For which period of time do we need to train ASNets until they perform
reasonably well? The necessary training time is obviously heavily dependent on the
domain, but it can be observed that only few epochs seem to be sufficient in most cases.
When looking at the success rate during training, no further progress can be recognized
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after two or three epochs.
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Figure 7.3: Loss development during training for the Hanoi domain with A∗ hadd teacher

Furthermore, one can analyse the development of the loss values during training. It
can be found that these are very volatile for ASNets in our training algorithm. Most
progress made for one problem is set back significantly after applying few problem epochs
on a second problem instance. This behaviour can be observed for all domains. Figure
7.3 illustrates the loss development for the Hanoi domain with the A∗ hadd teacher search.
Even after using only a single problem epoch, such a graph could still be observed. These
values imply that our networks overfit and are too specialised on a given task. Therefore,
whenever going to the next problem we will almost restart at the beginning which makes
steady progress over multiple epochs seemingly impossible. One major reason for this
limited generalisation of training on single problems is probably the sampling process
in which the predominant amount of states are sampled using the teacher search. This
causes the network to learn to replicate the search of the used teacher which usually does
not translate well to other problems. However, this does not seem to be the only reason
for the inability of ASNets to learn or generalise outside the training set in most domains
because such a development can also be found for Tyreworld as shown in Figures 7.4 and
7.5.
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Figure 7.4: Tyreworld loss development with A∗ hLM−cut teacher
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Figure 7.5: Tyreworld loss development with A∗ hadd teacher

The graphs even look almost identical for both A∗ teacher search trainings on the
Tyreworld domain, despite the LM-cut trained ASNets were able to solve all problems
and the hadd ones not a single instance.

Loss development graphs, as well as illustrations of the success rate and time distri-
bution during training for all domains can be found in the Appendix A.



Chapter 8

Future Work

This thesis serves as a starting point to learning domain-dependent policies with neural
networks for application in classical planning mainly based on the work of Sam Toyer with
his introduction of Action Schema Networks. However, there are still logical extensions
and related approaches worth considering regarding future research in this field.

8.1 Additional input features

One straight-forward extension, which should be implemented for classical planning, are
additional heuristic input features as they were already proposed and evaluated by Sam
Toyer. While our work considered such inputs and already provides the framework for
such additions, they were not implemented yet.

Sam Toyer found, that binary values indicating landmark features computed by the
LM-cut heuristic function were able to assist ASNets in overcoming potential limits re-
garding their receptive field. However, we propose to use non-binary values. While such
simple input data can be helpful, neural networks are usually capable of processing and
learning based on more complex inputs carrying more information. This way, one could
not only encode simple boolean input values but e.g. provide the exact number of dis-
junctive action landmarks in which an action occurs and the amount of disjunctive action
landmarks only containing one specific action.

Besides heuristic features as additional inputs, one could also provide action costs for
all actions in the input. Currently, the network can not directly reason about action
costs which are only passively recognized due to the teacher search considering it for the
sampling and the corresponding ys,a values. While the evaluation shows, that with such
sampling the network is capable of learning cost-optimal solutions (whenever an optimal
teacher search is provided), such inputs might speed up the learning and lead to less
dependency on the teacher search for good network policies.

8.2 Lifting implementation limits

Currently, our implementation of ASNets for classical planning is still posing some limi-
tations regarding their use. As already indicated by Sam Toyer, the networks can only be
defined for planning tasks not containing any quantifications. The reason is fairly simple.
Whenever quantifiers occur in action conditions or effects, it is not guaranteed anymore
that every grounded action instantiated from an underlying action schema has the same
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number of related propositions. This variation would make the current form of weight
sharing for action modules impossible. However, this limitation can be overcome fairly
easily by introducing pooling to action modules just as it is already done for propositions.

Another remaining difficulty lies in the ASNet architecture which include one module
for each grounded action and proposition. As seen in the evaluation (and visible in
the appendix data tables), this leads to huge networks in some domains which do pose
significant challenges in memory, processing time and their learning capabilities. Due to
the seemingly inefficient computation on those domains, training and sampling does not
progress as intended or can not be finished at all. Closely related to this issue, it would
mean considerable progress in usability if ASNets could not only share the weights but
the entire network among all problems of a given domain. This would save significant
time in which we had to construct the networks whenever processing a problem. But
the definition of relatedness, as one of the core concepts of ASNets, is dependent on the
instantiated problems of a domain, so it remains unclear how to overcome this challenge.

8.3 Sampling strategies

Our current sampling strategy used during training is a slightly altered version of the orig-
inal approach proposed by Sam Toyer modified for classical planning application. During
this sampling search we collect sample data in form of states with additional information
based on (goal) trajectories followed by our network policy or the teacher search. While
the data collected by this process is often essential to solve the problem at hand, it will
only represent a small part of the state space. This can be potentially problematic given
that states sampled from connected trajectories share a strong correlation and depen-
dency. Such a connection can lead to a strong bias of the trained network policy which
might limit its “understanding” of the problem as a whole and therefore its adaptability
and ability to generalise. As we train our networks to follow the already biased trajec-
tories from the teacher search, we increasingly push the policy towards merely imitating
the teacher instead of learning concepts for the entire domain from it. This might be one
of the reasons why stable progress during training with respect to the loss development
was not achieved.

Such a bias could be diminished by not sampling from (goal) trajectories of the teacher
search for each explored state. These are highly repetitive for most states explored leading
to states along the teacher trajectory being sampled several times which only enforces the
network to imitate its teacher. One could only sample the teacher trajectory once from
the initial state just as it is done with the network search for exploration. This will lead
to significantly smaller sampling data sets and it has to be analysed whether it is still
sufficient for progress. However, this might reduce the bias of the ASNet policy towards
the teacher search without major changes.

Another approach to avoid such a bias entirely would be to use a uniform sampling
strategy, i.e. collecting uncorrelated data randomly. This means, no teacher search to
collect connected trajectories could be used due to their dependency. Sampling truly
random states without an underlying bias from a planning problem state space is very
challenging, but it could improve the quality of the sampling data and therefore the
learning considerably.



48 CHAPTER 8. FUTURE WORK

8.4 Integrate ASNets in search

One logical addition directly based on this work would be the implementation of sophis-
ticated search engines for policies in general or our network policy in particular. The
current policy search, which was used with the ASNet policies in our evaluation, naively
follows the most probable action in a state according to the given policy. While such a
simple approach allowed us to truly evaluate the network policies without any assistance,
it does not seem very promising for further planning applications.

Search with backtracking The already existing policy search could be extended with
a backtracking algorithm or an open list containing already found states sorted by their
policy probability. This would allow the search to continue whenever a duplicate or dead-
end is explored by e.g. simply choosing the second best action in the last state according
to the policy instead of choosing the most probable one. Despite its simplicity, such an
addition could lead to significant improvements in domains containing many dead-ends
or circular paths in their state space.

Combine ASNets with heuristics Another approach for searching with a network
policy would be to combine already established heuristic functions and pruning techniques
with the policy. The action probabilities of the policy could e.g. be used for tiebreaking
between states with equal heuristic values. Another idea would be to combine heuristic
values with the action probabilities. When expanding state s with s

a−→ s′ during the
search, a value based on the action probability πθ(a | s), the heuristic value h(s′) and
potentially the cost g(s′) could be computed and used as the priority measure. E.g. one
could prioritize states which minimize the value h(s′)/πθ(a | s) which increases for a rising
heuristic value or a decreasing policy probability.

Furthermore, as already implied in the evaluation, pruning techniques capable of re-
moving symmetric paths, which can be chosen interchangeably, could assist the network
policy. Given the visible difficulty during the evaluation regarding indecisiveness of ASNet
policies in these situations, this could considerably improve the search performance.

8.5 Recurrent approach

Lastly, instead of going the apparent way and finding sophisticated search engines to
apply the network policy in, it might also be worth considering alternative network archi-
tecture approaches. Currently, the network is often incapable of adapting its behaviour if
a problem of the domain has a new property not encountered during training. One could
state, that ASNets do not necessarily learn “intelligent” behaviour, as previously men-
tioned, but just strictly recollect a provided teacher search. Closely related, the network
policy frequently guides the search towards already encountered states. Especially at the
beginning of the training, this is a serious challenge in domains containing (many) circles.
So far, this situation led to an early termination of the search because the policy would
just retake the same path running in a circle due to the exact same inputs.

Therefore, it might enhance the networks generalisation capability to not just represent
the current state of the problem as the input, but also include previous choices or already
applied actions. With such additional information, a network could potentially learn to
adapt its behaviour if it recognizes repetitions in its trajectory.
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Such structures are already successfully applied to language processing and machine
translation in the form of recurrent neural networks [40]. These networks receive results of
previous computations or iterations as inputs and are therefore able to constantly process
new input data while also considering previous steps.



Chapter 9

Conclusion

The objective of this thesis was to evaluate the suitability of domain-dependent policy
learning with Action Schema Networks for application in classical automated planning.
Therefore, we integrated this novel neural network architecture into the Fast-Downward
planning system as the primary framework for heuristic search in automated planning.
To do so, we first extended the PDDL translation process of Fast-Downward to compute
the relations between abstract action schemas and predicates as well as among their
groundings, which are essential for the network structure of ASNets. We implemented
the neural networks using custom layers of the Keras machine learning library.

Following, we modified the original training algorithm of Sam Toyer for application in
classical automated planning. This primarily involved the implementation of a sampling
search to collect states from the state spaces of planning tasks which can be used as data
sets during training. Instead of using a teacher policy as proposed by Sam Toyer for
predominantly probabilistic planning, our sampling allows for an arbitrary search config-
uration implemented in the Fast-Downward system to be used as a teacher search. This
leads to large flexibility given the popularity of the framework and the many planning con-
figurations already implemented in Fast-Downward including search algorithms, heuristic
functions and various pruning techniques.

To reliably represent ASNets in Fast-Downward we extended the system with poli-
cies as a second form of evaluation besides heuristics. These were based upon already
existing concepts in the framework and simplify the addition of any further policies in
Fast-Downward. The network policy itself serves as an interface to the ASNet model,
which is contained in a Protobuf network file, feeding any input into the network and
later extracting the policy. As the search algorithms previously implemented in Fast-
Downward are all based on heuristic functions, we added a simple policy search to exploit
these new evaluators on planning tasks.

Finally, we conducted an extensive empirical evaluation of ASNets to answer our
main question whether ASNets are suited for application in classical planning. We con-
sidered eight domains of varying complexity and structure and compared the networks
after training with multiple teachers to the performance of competitive baseline plan-
ners from the classical planning field. Although the networks only generalised well and
performed impressively on a single domain, significant learning could be found for most
tasks. Therefore, we do not consider ASNets unsuitable for classical planning but rather
found shortcomings of the approaches currently followed regarding the network architec-
ture, its training and sampling process. We provide analysis for the training progress and
policy behaviour during evaluation for each domain in order to find common issues which

50



51

prevented the network search to be successful on these domains. Based on the findings
of our examination, we provide suggestions for further research which might alleviate or
even solve the identified problems.

However, the final assessment regarding the suitability of Action Schema Networks for
classical planning will depend on the results of further research building upon our work.



Appendix A

Training

For the training process of each domain, we provide graphs indicating

• the time distribution, i.e. how much time was spent for network creation, sam-
pling and training epochs respectively

• the success rate development

• the loss development

Note, that we do not provide such information for the ASNet trained with the A∗

hLM−cut teacher for the TurnAndOpen domain as the training was interrupted after nine
hours without finishing a single sampling process.
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A.1 Blocksworld

1st configuration: A∗ hLM−cut teacher
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Figure A.1: Time distribution, success rate and loss development during training
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2nd configuration: A∗ hadd teacher

network building sampling search training
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Figure A.2: Time distribution, success rate and loss development during training
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3rd configuration: GBFS hFF teacher

network building sampling search training
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A.2 Elevator

1st configuration: A∗ hLM−cut teacher
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2nd configuration: A∗ hadd teacher

network building sampling search training
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3rd configuration: GBFS hFF teacher

network building sampling search training

0

2,000

4,000

6,000

1,835.18

404.93

6,259.54

ti
m

e
in

se
co

n
d
s

0 1 2 3

0

epoch

su
cc

es
s

ra
te

(i
n

p
er

ce
n
t)

0 200 400 600 800 1,000 1,200 1,400

10

15

training epoch

lo
ss

va
lu

e

d-01.pddl
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A.3 Floortile

1st configuration: A∗ hLM−cut teacher
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2nd configuration: A∗ hadd teacher

network building sampling search training

0

2,000

4,000

6,000

240.06

5,700.32

1,490.32

ti
m

e
in

se
co

n
d
s

0 1 2 3 4

0

25

50

75

100

epoch

su
cc

es
s

ra
te

(i
n

p
er

ce
n
t)

0 200 400 600 800 1,000 1,200 1,400 1,600
1

2

3

4

5

training epoch

lo
ss

va
lu

e

d-01-4-3-2.pddl
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3rd configuration: GBFS hFF teacher

network building sampling search training
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A.4 Hanoi

1st configuration: A∗ hLM−cut teacher
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Figure A.10: Time distribution, success rate and loss development during training
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2nd configuration: A∗ hadd teacher

network building sampling search training
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3rd configuration: GBFS hFF teacher

network building sampling search training
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A.5 ParcPrinter

1st configuration: A∗ hLM−cut teacher

network building sampling search training
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2nd configuration: A∗ hadd teacher
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Figure A.14: Time distribution, success rate and loss development during training
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3rd configuration: GBFS hFF teacher

network building sampling search training
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A.6 Sokoban

1st configuration: A∗ hLM−cut teacher
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2nd configuration: A∗ hadd teacher
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3rd configuration: GBFS hFF teacher

network building sampling search training
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A.7 TurnAndOpen

2nd configuration: A∗ hadd teacher
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3rd configuration: GBFS hFF teacher
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Figure A.20: Time distribution, success rate and loss development during training
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A.8 Tyreworld

1st configuration: A∗ hLM−cut teacher
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Figure A.21: Time distribution, success rate and loss development during training
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2nd configuration: A∗ hadd teacher

network building sampling search training
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Figure A.22: Time distribution, success rate and loss development during training
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3rd configuration: GBFS hFF teacher

network building sampling search training
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Appendix B

Evaluation

In this appendix, we first provide an overview over the coverage of all baseline and network
planners followed by detailed tables for each problem evaluated. Note that the networks
are annotated as follows:

• ASNet LM: ASNets trained with A∗ hLM−cut teacher search

• ASNet add: ASNets trained with A∗ hadd teacher search

• ASNet FF: ASNets trained with GBFS hFF teacher search using a dual-queue of
preferred operators

B.1 Coverage

Domain A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF

Blocksworld 28/35 35/35 35/35 35/35 7/35 7/35 4/35
Elevator 2/30 15/30 30/30 30/30 0/29 0/30 0/30
Floortile 6/20 20/20 9/20 9/20 0/20 1/20 0/20
Hanoi 13/20 15/20 16/20 15/20 3/20 2/20 2/20
Parcprinter 6/10 8/10 10/10 10/10 1/10 1/10 4/10
Sokoban 28/30 29/30 29/30 29/30 0/30 0/30 0/30
Turnandopen 0/19 17/19 15/19 19/19 0/19 0/19 0/19
Tyreworld 3/20 6/20 20/20 20/20 20/20 0/20 20/20

B.2 Problem Evaluations

For all problems of the considered domains, we provide the cost of extracted plans, the
search time as well as the duration of the model creation for the ASNet configurations.
For the LAMA baseline planner the search time is annotated as “/*” whenever the LAMA
planner did not terminate in the 30 minutes time limit. Due to the iterative searches of
this planner, we are still able to provide the plan costs from the last finished iteration.
Additionally, it should be noted that training for the Turnandopen domain with the
A∗ hLM−cut teacher search did not finish and therefore no evaluation for this network
configuration could be done in this domain.

Network creation for a domain was stopped after the process took longer than one hour
(3600s) for a given problem, leading to the following larger problems not being evaluated.

76
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B.2.1 Blocksworld

d-4-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 6 6 6 6 6 6 /
Search time 0.01s 0.01s 0.01s 0.01s 2.70s 2.67s 2.71s
Model creation time - - - - 10.00s 8.90s 8.80s

d-4-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 10 10 10 10 10 10 10
Search time 0.01s 0.01s 0.01s 0.01s 2.90s 2.92s 3.02s
Model creation time - - - - 12.66s 11.00s 11.06s

d-4-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 6 6 6 6 6 6 6
Search time 0.01s 0.01s 0.01s 0.01s 2.89s 2.41s 2.89s
Model creation time - - - - 9.62s 8.66s 8.70s

d-5-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 12 12 12 12 / / /
Search time 0.01s 0.01s 0.01s 0.07s 4.56s 4.54s 4.81s
Model creation time - - - - 14.47s 13.03s 12.95s

d-5-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 10 10 10 10 10 / /
Search time 0.01s 0.01s 0.01s 0.06s 4.66s 4.44s 4.24s
Model creation time - - - - 14.59s 13.13s 13.05s

d-5-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 16 16 24 16 / / /
Search time 0.01s 0.01s 0.01s 0.08s 4.34s 4.62s 5.10s
Model creation time - - - - 14.47s 13.06s 13.07s

d-6-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 12 18 12 12 / 14 14
Search time 0.01s 0.01s 0.01s 0.28s 8.21s 7.33s 6.82s
Model creation time - - - - 21.18s 18.29s 18.22s

d-6-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 10 10 10 10 10 10 10
Search time 0.01s 0.01s 0.01s 0.60s 7.39s 7.52s 6.35s
Model creation time - - - - 20.65s 19.76s 18.41s

d-6-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 20 22 32 20 / / /
Search time 0.02s 0.01s 0.01s 0.50s 8.32s 5.88s 6.59s
Model creation time - - - - 20.43s 18.64s 18.42s

d-7-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 20 22 22 20 / 20 /
Search time 0.01s 0.01s 0.01s 3.23s 9.94s 10.72s 8.69s
Model creation time - - - - 27.08s 24.88s 24.72s
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d-7-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 22 24 32 22 / / /
Search time 0.10s 0.01s 0.01s 5.33s 9.18s 9.10s 9.26s
Model creation time - - - - 27.31s 24.87s 24.43s

d-7-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 20 24 38 20 / / /
Search time 0.02s 0.01s 0.01s 5.03s 10.34s 8.90s 10.60s
Model creation time - - - - 27.68s 24.79s 24.62s

d-8-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 18 22 46 18 / / /
Search time 0.03s 0.01s 0.01s 48.11s 12.98s 14.44s 13.17s
Model creation time - - - - 35.25s 31.77s 31.69s

d-8-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 20 22 24 20 22 / /
Search time 0.13s 0.01s 0.01s 86.47s 13.32s 16.22s 12.29s
Model creation time - - - - 35.37s 32.11s 31.92s

d-8-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 16 20 26 16 / / /
Search time 0.01s 0.01s 0.01s 60.76s 14.08s 11.52s 12.64s
Model creation time - - - - 35.63s 31.92s 31.85s

d-9-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 30 30 64 30 / / /
Search time 2.73s 0.05s 0.01s 455.69s 15.92s 16.29s 16.63s
Model creation time - - - - 44.71s 40.48s 40.32s

d-9-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 28 34 64 28 / / /
Search time 0.07s 0.05s 0.01s 362.49s 18.65s 16.15s 16.27s
Model creation time - - - - 46.23s 40.14s 40.29s

d-9-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 26 26 44 26 / 26 /
Search time 0.13s 0.02s 0.01s 1185.92s 16.82s 15.95s 15.75s
Model creation time - - - - 44.57s 40.54s 40.57s

d-10-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 34 38 48 34 / / /
Search time 65.74s 0.05s 0.01s /* 24.61s 20.64s 19.87s
Model creation time - - - - 53.18s 53.57s 49.93s

d-10-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 32 36 56 32 / / /
Search time 9.09s 0.08s 0.01s /* 20.92s 20.05s 23.20s
Model creation time - - - - 50.45s 49.73s 49.81s
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d-10-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 34 40 52 34 / / /
Search time 25.76s 0.10s 0.01s /* 25.10s 20.00s 20.12s
Model creation time - - - - 50.28s 49.73s 49.74s

d-11-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 32 38 46 32 / / /
Search time 25.09s 0.03s 0.01s /* 25.17s 24.80s 28.34s
Model creation time - - - - 60.64s 60.27s 60.34s

d-11-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 30 38 110 30 / / /
Search time 29.93s 0.07s 0.01s /* 28.18s 26.14s 24.01s
Model creation time - - - - 60.86s 60.59s 60.62s

d-11-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 34 38 68 34 / / /
Search time 20.70s 0.07s 0.01s /* 26.02s 22.72s 24.62s
Model creation time - - - - 60.68s 60.36s 60.15s

d-12-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 34 46 78 34 / / /
Search time 34.08s 0.39s 0.01s /* 41.86s 26.06s 31.96s
Model creation time - - - - 72.26s 71.86s 71.81s

d-12-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 34 48 58 34 / / /
Search time 3.32s 1.48s 0.01s /* 32.68s 32.01s 37.49s
Model creation time - - - - 72.56s 72.04s 71.96s

d-13-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 50 88 44 / / /
Search time / 3.31s 0.02s /* 37.87s 43.33s 35.76s
Model creation time - - - - 85.50s 85.06s 85.04s

d-13-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 52 104 48 44 / /
Search time / 0.38s 0.01s /* 41.54s 37.10s 34.95s
Model creation time - - - - 85.17s 84.73s 84.75s

d-14-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 38 54 84 38 / / /
Search time 101.66s 1.91s 0.01s /* 49.24s 41.42s 51.06s
Model creation time - - - - 99.44s 98.89s 98.53s

d-14-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 36 48 74 36 / / /
Search time 200.32s 1.12s 0.01s /* 47.95s 41.58s 55.72s
Model creation time - - - - 99.44s 98.89s 98.84s
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d-15-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 52 158 54 / / /
Search time / 3.39s 0.06s /* 56.66s 49.55s 55.11s
Model creation time - - - - 114.58s 114.25s 114.38s

d-15-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 60 120 66 / / /
Search time / 0.46s 0.03s /* 49.75s 58.93s 50.30s
Model creation time - - - - 114.71s 114.58s 114.33s

d-16-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 64 106 54 / / /
Search time / 1.52s 0.04s /* 60.56s 54.91s 65.03s
Model creation time - - - - 131.01s 130.97s 128.79s

d-16-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 64 160 60 / / /
Search time / 5.99s 0.12s /* 63.51s 71.35s 55.39s
Model creation time - - - - 135.12s 130.50s 129.10s

d-17-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 62 132 46 / / /
Search time / 2.43s 0.07s /* 73.00s 64.92s 63.02s
Model creation time - - - - 164.68s 148.77s 147.06s

B.2.2 Elevator

d-01 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 52 64 86 52 / / /
Search time 1.66s 0.04s 0.01s 35.91s 41.58s 56.27s 44.84s
Model creation time - - - - 144.42s 127.53s 1138.62s

d-02 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 53 70 88 53 / / /
Search time 6.59s 0.06s 0.01s 460.76s 62.87s 55.21s 53.25s
Model creation time - - - - 147.29s 133.10s 13540.41s

d-03 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 77 130 66 / / /
Search time / 0.12s 0.01s /* 69.84s 66.10s 101.08s
Model creation time - - - - 174.97s 158.46s 186.57s

d-04 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 112 169 89 / / /
Search time / 0.80s 0.02s /* 80.11s 76.39s 76.88s
Model creation time - - - - 201.74s 196.64s 216.86s
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d-05 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 101 171 73 / / /
Search time / 4.35s 0.02s /* 88.81s 86.48s 95.20s
Model creation time - - - - 230.32s 211.49s 7067.69s

d-06 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 113 140 138 / / /
Search time / 3.06s 0.03s /* 94.40s 99.30s 93.06s
Model creation time - - - - 259.85s 237.61s 276.52s

d-07 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 137 215 165 / / /
Search time / 14.09s 0.04s /* 123.50s 102.59s 97.82s
Model creation time - - - - 287.90s 264.07s 348.60s

d-08 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 143 150 192 / / /
Search time / 42.57s 0.03s /* 123.28s 118.41s 124.53s
Model creation time - - - - 318.45s 290.13s 371.44s

d-09 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 132 237 99 / / /
Search time / 41.42s 0.04s /* 127.67s 124.31s 161.21s
Model creation time - - - - 359.87s 317.66s 397.52s

d-10 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 206 289 314 / / /
Search time / 82.43s 0.07s /* 141.54s 156.93s 173.19s
Model creation time - - - - 360.66s 344.52s 5741.19s

d-11 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 107 162 115 / / /
Search time / 3.45s 0.04s /* 195.73s 151.39s 172.85s
Model creation time - - - - 470.82s 416.38s 493.89s

d-12 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 175 283 130 / / /
Search time / 6.43s 0.07s /* 240.62s 191.65s 225.97s
Model creation time - - - - 595.36s 526.57s 888.80s

d-13 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 189 259 154 / / /
Search time / 135.75s 0.08s /* 241.56s 257.60s 262.86s
Model creation time - - - - 720.94s 642.54s 743.57s

d-14 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 336 346 / / /
Search time / / 0.17s /* 295.56s 298.22s 304.40s
Model creation time - - - - 859.26s 764.18s 895.33s
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d-15 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 405 287 / / /
Search time / / 0.19s /* 327.75s 371.98s 319.88s
Model creation time - - - - 1008.58s 889.63s 1036.81s

d-16 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 434 278 / / /
Search time / / 0.20s /* 366.44s 421.13s 357.89s
Model creation time - - - - 1164.60s 1024.25s 2603.03s

d-17 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 306 468 543 / / /
Search time / 578.21s 0.31s /* 409.36s 416.47s 441.96s
Model creation time - - - - 1303.02s 1148.05s 3373.55s

d-18 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 358 503 / / /
Search time / / 0.34s /* 515.35s 482.11s 466.46s
Model creation time - - - - 1311.53s 1304.27s 1493.18s

d-19 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 545 532 / / /
Search time / / 0.63s /* 519.93s 505.37s 517.24s
Model creation time - - - - 1451.45s 1451.56s 1872.24s

d-20 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 638 619 / / /
Search time / / 0.48s /* 563.44s 553.81s 531.74s
Model creation time - - - - 1602.99s 2094.33s 1932.06s

d-21 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 264 375 259 / / /
Search time / 1720.34s 0.22s /* 606.27s 520.85s 554.17s
Model creation time - - - - 1506.29s 2796.94s 3520.01s

d-22 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 397 411 / / /
Search time / / 0.35s /* 717.98s 643.01s 756.26s
Model creation time - - - - 1971.70s 3923.51s 3540.82s

d-23 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 508 502 / / /
Search time / / 0.61s /* 940.72s 822.53s 1036.31s
Model creation time - - - - 2508.22s 2467.26s 2441.84s

d-24 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 736 962 / / /
Search time / / 1.02s /* 1027.24s 884.21s 1140.35s
Model creation time - - - - 3106.12s 3043.61s 3057.74s
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d-25 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 634 902 / / /
Search time / / 1.82s /* / 1176.45s 1335.53s
Model creation time - - - - 3709.23s 3650.00s 3674.30s

d-26 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 891 741 / / /
Search time / / 1.46s /* / / /
Model creation time - - - - / / /

d-27 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 845 1071 / / /
Search time / / 3.45s /* / / /
Model creation time - - - - / / /

d-28 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 1131 1015 / / /
Search time / / 4.69s /* / / /
Model creation time - - - - / / /

d-29 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 1285 896 / / /
Search time / / 21.99s /* / / /
Model creation time - - - - / / /

d-30 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 805 1006 / / /
Search time / / 3.03s /* / / /
Model creation time - - - - / / /

B.2.3 Floortile

d-43-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 56 56 110 56 / / /
Search time 32.90s 0.05s 11.67s 341.01s 19.08s 16.08s 20.74s
Model creation time - - - - 48.21s 43.01s 42.93s

d-44-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 68 72 127 102 / / /
Search time 1166.37s 0.45s 101.54s /* 23.16s 25.12s 26.07s
Model creation time - - - - 64.40s 57.97s 58.00s

d-53-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 63 63 158 63 / 75 /
Search time 167.24s 0.17s 142.93s /* 21.99s 24.94s 20.68s
Model creation time - - - - 58.50s 52.84s 53.05s
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d-54-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 93 / / / / /
Search time / 0.16s / / 32.59s 31.27s 34.59s
Model creation time - - - - 80.32s 72.18s 72.07s

d-55-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 121 / / / / /
Search time / 2.15s / / 43.92s 47.45s 37.34s
Model creation time - - - - 101.22s 91.71s 91.78s

d-64-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 114 / / / / /
Search time / 1.16s / / 34.15s 34.90s 39.93s
Model creation time - - - - 95.20s 85.75s 85.74s

d-65-0 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 136 / / / / /
Search time / 2.30s / / 53.52s 52.61s 48.88s
Model creation time - - - - 122.78s 109.54s 109.65s

d-44-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 75 169 147 / / /
Search time / 0.12s 476.51s /* 23.10s 24.27s 26.94s
Model creation time - - - - 67.55s 59.16s 59.08s

d-53-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 65 65 140 65 / / /
Search time 240.32s 0.05s 74.94s /* 22.46s 21.80s 22.65s
Model creation time - - - - 59.02s 53.04s 53.09s

d-54-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 98 / / / / /
Search time / 0.17s / / 28.92s 30.97s 28.42s
Model creation time - - - - 80.53s 71.60s 71.76s

d-55-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 116 / / / / /
Search time / 1.95s / / 36.90s 38.32s 51.90s
Model creation time - - - - 101.99s 91.98s 90.88s

d-64-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 117 / / / / /
Search time / 1.28s / / 38.87s 38.36s 39.54s
Model creation time - - - - 95.38s 85.56s 84.64s

d-65-1 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 157 / / / / /
Search time / 2.32s / / 49.23s 45.98s 48.53s
Model creation time - - - - 123.74s 109.32s 108.28s
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d-43-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 56 56 115 56 / / /
Search time 45.89s 0.05s 22.09s 377.68s 19.21s 16.92s 16.97s
Model creation time - - - - 50.68s 44.41s 43.99s

d-44-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 76 133 116 / / /
Search time / 0.38s 208.12s /* 26.64s 23.83s 23.92s
Model creation time - - - - 64.44s 58.16s 57.71s

d-53-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 65 65 138 65 / / /
Search time 251.60s 0.07s 65.28s /* 23.28s 21.42s 20.87s
Model creation time - - - - 60.15s 53.08s 52.79s

d-54-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 85 196 188 / / /
Search time / 0.20s 126.06s /* 33.55s 30.88s 35.51s
Model creation time - - - - 79.08s 71.50s 71.19s

d-55-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 112 / / / / /
Search time / 2.09s / / 36.30s 43.52s 48.95s
Model creation time - - - - 101.11s 91.80s 91.07s

d-64-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 124 / / / / /
Search time / 1.36s / / 38.10s 33.80s 39.82s
Model creation time - - - - 97.02s 86.46s 86.05s

d-65-2 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 144 / / / / /
Search time / 2.40s / / 52.85s 53.00s 45.96s
Model creation time - - - - 121.40s 109.24s 109.09s

B.2.4 Hanoi

d-01 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 1 1 1 1 1 1 1
Search time 0.01s 0.01s 0.01s 0.01s 0.50s 0.54s 0.54s
Model creation time - - - - 4.61s 3.95s 4.02s

d-02 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 3 3 3 3 3 3 /
Search time 0.01s 0.01s 0.01s 0.01s 1.72s 1.40s 1.47s
Model creation time - - - - 5.55s 4.64s 4.62s
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d-03 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 7 7 7 7 7 / 7
Search time 0.01s 0.01s 0.01s 0.01s 3.43s 3.23s 3.02s
Model creation time - - - - 10.90s 9.16s 9.11s

d-04 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 15 15 15 15 / / /
Search time 0.01s 0.01s 0.01s 0.01s 6.67s 5.68s 7.60s
Model creation time - - - - 19.03s 17.15s 15.66s

d-05 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 31 31 39 31 / / /
Search time 0.01s 0.01s 0.01s 0.05s 10.61s 9.39s 9.47s
Model creation time - - - - 27.91s 27.43s 25.34s

d-06 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 63 63 64 63 / / /
Search time 0.03s 0.01s 0.01s 0.19s 17.02s 13.58s 19.41s
Model creation time - - - - 41.72s 38.43s 37.73s

d-07 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 127 127 151 127 / / /
Search time 0.12s 0.04s 0.05s 0.90s 22.35s 20.87s 21.43s
Model creation time - - - - 59.67s 54.59s 54.35s

d-08 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 255 255 303 255 / / /
Search time 0.50s 0.14s 0.09s 4.34s 29.90s 32.23s 28.31s
Model creation time - - - - 83.30s 75.72s 74.98s

d-09 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 511 511 645 511 / / /
Search time 2.22s 0.53s 0.23s 18.18s 46.60s 38.84s 38.85s
Model creation time - - - - 110.44s 101.08s 100.68s

d-10 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 1023 1023 1280 1023 / / /
Search time 9.14s 2.01s 0.71s 80.67s 53.62s 51.50s 54.19s
Model creation time - - - - 144.51s 132.58s 131.66s

d-11 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 2047 2047 2626 2047 / / /
Search time 38.12s 7.81s 2.59s 371.95s 69.98s 68.16s 71.59s
Model creation time - - - - 187.95s 170.21s 168.86s

d-12 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 4095 4095 5380 4095 / / /
Search time 151.88s 29.78s 9.04s /* 94.42s 77.57s 128.41s
Model creation time - - - - 241.73s 214.76s 213.17s
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d-13 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 8191 8191 10713 9563 / / /
Search time 650.62s 115.92s 34.07s /* 100.31s 145.58s 145.81s
Model creation time - - - - 299.05s 268.49s 266.07s

d-14 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 16383 21701 19297 / / /
Search time / 435.81s 118.62s /* 132.13s 129.75s 138.88s
Model creation time - - - - 365.73s 330.91s 330.19s

d-15 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 32767 43447 38775 / / /
Search time / 1630.76s 443.40s /* 187.26s 152.76s 168.93s
Model creation time - - - - 446.98s 405.94s 407.05s

d-16 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 90757 / / / /
Search time / / 1513.55s / 187.82s 187.31s 202.53s
Model creation time - - - - 490.89s 492.77s 492.58s

d-17 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / / / / / /
Search time / / / / 232.84s 263.38s 216.00s
Model creation time - - - - 590.72s 592.89s 587.40s

d-18 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / / / / / /
Search time / / / / 272.79s 297.85s 253.40s
Model creation time - - - - 706.25s 707.46s 700.12s

d-19 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / / / / / /
Search time / / / / 311.93s 318.28s 305.88s
Model creation time - - - - 843.59s 846.80s 836.55s

d-20 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / / / / / /
Search time / / / / 413.44s 371.42s 423.13s
Model creation time - - - - 1038.27s 1054.61s 987.07s

B.2.5 ParcPrinter

d-01 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 169009 169009 269038 169009 169009 169009 269038
Search time 0.01s 0.01s 0.01s 0.01s 5.23s 4.61s 5.19s
Model creation time - - - - 19.09s 19.11s 19.05s
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d-02 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 438047 438047 538076 438047 / / /
Search time 0.01s 0.01s 0.01s 0.04s 9.80s 8.48s 8.93s
Model creation time - - - - 42.18s 43.16s 42.20s

d-03 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 807114 807114 807114 807114 / / 807114
Search time 0.01s 0.01s 0.01s 0.12s 7.80s 8.02s 7.70s
Model creation time - - - - 23.59s 23.72s 23.37s

d-04 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 876094 876094 1076152 876094 / / /
Search time 0.02s 0.01s 0.01s 11.52s 21.79s 22.25s 32.17s
Model creation time - - - - 56.72s 57.54s 56.63s

d-05 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 1145132 1145132 1345190 1145132 / / 1345190
Search time 0.15s 0.01s 0.01s 162.47s 25.98s 28.94s 35.08s
Model creation time - - - - 73.39s 73.57s 72.74s

d-06 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 1514199 1514199 1614228 1514199 / / 1614228
Search time 24.15s 0.04s 0.01s 1097.90s 34.71s 28.48s 30.22s
Model creation time - - - - 81.71s 82.04s 81.17s

d-07 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 1383121 1883266 1883266 / / /
Search time / 0.02s 0.01s /* 49.68s 54.30s 54.17s
Model creation time - - - - 128.78s 129.16s 127.98s

d-08 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 1852217 2152304 2152304 / / /
Search time / 0.27s 0.01s /* 52.72s 49.15s 51.99s
Model creation time - - - - 135.01s 135.19s 133.91s

d-09 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 2421342 2421342 / / /
Search time / / 0.01s /* 62.69s 59.56s 62.27s
Model creation time - - - - 162.80s 154.26s 154.13s

d-10 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 2690380 2690380 / / /
Search time / / 0.01s /* 73.77s 67.16s 70.48s
Model creation time - - - - 184.14s 166.06s 165.75s
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B.2.6 Sokoban

d-01 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 9 13 13 9 / / /
Search time 0.01s 0.01s 0.01s 0.11s 12.94s 11.69s 14.65s
Model creation time - - - - 36.64s 32.49s 32.45s

d-02 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 29 29 37 29 / / /
Search time 1.24s 0.10s 0.04s 16.76s 28.63s 24.65s 22.74s
Model creation time - - - - 68.00s 61.49s 61.18s

d-03 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 9 9 13 9 / / /
Search time 0.02s 0.01s 0.01s 0.12s 16.82s 15.32s 16.10s
Model creation time - - - - 43.96s 40.23s 39.79s

d-04 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 31 31 35 31 / / /
Search time 40.07s 1.87s 1.76s 496.74s 38.31s 37.10s 41.52s
Model creation time - - - - 104.39s 93.22s 93.30s

d-05 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 30 30 40 30 / / /
Search time 0.97s 0.29s 0.36s 7.43s 25.21s 25.64s 30.46s
Model creation time - - - - 72.53s 66.74s 66.56s

d-06 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 32 32 48 32 / / /
Search time 2.61s 0.77s 0.53s 20.72s 45.41s 41.58s 45.66s
Model creation time - - - - 107.49s 99.01s 98.77s

d-07 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 29 29 33 29 / / /
Search time 0.46s 0.14s 0.06s 2.25s 34.12s 25.83s 26.20s
Model creation time - - - - 72.40s 65.64s 65.59s

d-08 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 50 52 62 50 / / /
Search time 18.47s 6.00s 0.96s 34.33s 38.10s 33.79s 40.80s
Model creation time - - - - 93.10s 83.48s 83.13s

d-09 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 49 49 69 49 / / /
Search time 13.34s 2.49s 1.41s 54.44s 46.24s 40.45s 48.96s
Model creation time - - - - 115.69s 104.42s 104.22s

d-10 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 2 2 2 2 / / /
Search time 0.04s 0.04s 0.11s 0.65s 64.64s 55.13s 65.29s
Model creation time - - - - 150.37s 135.51s 135.04s
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d-11 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 10 10 10 10 / / /
Search time 2.86s 0.65s 0.15s 43.28s 163.57s 153.41s 171.31s
Model creation time - - - - 432.21s 392.66s 392.23s

d-12 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 44 44 92 44 / / /
Search time 107.91s 7.06s 2.27s 1797.71s 60.77s 48.78s 44.44s
Model creation time - - - - 147.77s 124.30s 124.17s

d-13 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 31 31 31 31 / / /
Search time 27.20s 0.77s 0.59s 1247.23s 37.36s 38.88s 44.07s
Model creation time - - - - 116.65s 98.52s 98.55s

d-14 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 50 50 84 50 / / /
Search time 83.27s 12.04s 5.85s 301.75s 48.86s 42.97s 48.71s
Model creation time - - - - 127.96s 115.78s 115.55s

d-15 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 39 43 59 53 / / /
Search time 365.75s 159.86s 337.43s /* 54.55s 46.85s 61.96s
Model creation time - - - - 134.13s 121.77s 121.84s

d-16 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 33 33 57 33 / / /
Search time 269.42s 8.29s 1.99s 1507.43s 60.29s 56.36s 83.02s
Model creation time - - - - 146.61s 132.84s 132.67s

d-17 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 23 23 39 23 / / /
Search time 117.68s 1.19s 0.65s /* 75.97s 64.16s 85.80s
Model creation time - - - - 191.19s 172.59s 172.56s

d-18 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 43 43 61 43 / / /
Search time 1323.51s 93.14s 65.24s /* 48.59s 52.33s 50.20s
Model creation time - - - - 138.69s 125.27s 125.00s

d-19 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 18 18 24 18 / / /
Search time 30.06s 4.17s 1.73s /* 196.10s 223.91s 200.40s
Model creation time - - - - 576.74s 522.61s 516.96s

d-20 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 14 / / / / / /
Search time 1786.92s / / / 222.88s 267.40s 257.48s
Model creation time - - - - 597.60s 574.60s 563.15s
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d-21 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 51 51 71 51 / / /
Search time 1714.65s 85.33s 8.63s /* 74.79s 65.84s 64.03s
Model creation time - - - - 154.57s 155.41s 152.36s

d-22 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 60 60 84 60 / / /
Search time 1543.80s 97.47s 6.12s /* 64.47s 76.99s 59.88s
Model creation time - - - - 142.58s 143.72s 141.12s

d-23 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 46 46 78 46 / / /
Search time 601.42s 96.80s 14.22s 929.85s 56.70s 55.43s 58.22s
Model creation time - - - - 133.96s 135.00s 132.55s

d-24 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 47 47 73 47 / / /
Search time 93.40s 7.61s 8.62s 519.83s 53.89s 53.70s 53.80s
Model creation time - - - - 131.53s 132.41s 130.06s

d-25 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 52 56 78 52 / / /
Search time 100.65s 7.28s 3.49s 242.99s 65.42s 57.05s 68.48s
Model creation time - - - - 144.57s 144.39s 142.10s

d-26 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 51 69 85 / / /
Search time / 821.26s 110.82s /* 84.68s 78.20s 74.31s
Model creation time - - - - 183.53s 183.59s 179.94s

d-27 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 24 24 24 24 / / /
Search time 838.79s 103.06s 593.12s /* 120.23s 133.44s 133.83s
Model creation time - - - - 359.85s 316.19s 314.24s

d-28 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 111 135 113 / / /
Search time / 136.60s 196.82s /* 77.72s 81.39s 91.01s
Model creation time - - - - 215.39s 193.55s 193.74s

d-29 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 42 42 126 96 / / /
Search time 585.42s 48.77s 941.57s /* 58.52s 54.29s 52.97s
Model creation time - - - - 144.03s 129.22s 128.94s

d-30 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 80 92 114 100 / / /
Search time 450.19s 135.29s 38.28s /* 57.21s 70.69s 69.18s
Model creation time - - - - 146.95s 130.72s 130.67s
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B.2.7 TurnAndOpen

d-01 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 79 81 82 - / /
Search time / 0.12s 0.02s /* - 77.45s 83.50s
Model creation time - - - - - 179.39s 191.34s

d-02 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 96 134 106 - / /
Search time / 6.41s 0.10s /* - 104.57s 103.94s
Model creation time - - - - - 256.86s 241.28s

d-03 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 113 125 107 - / /
Search time / 2.52s 0.08s /* - 118.59s 124.38s
Model creation time - - - - - 290.90s 274.20s

d-04 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 115 138 118 - / /
Search time / 0.14s 0.07s /* - 135.96s 155.38s
Model creation time - - - - - 369.21s 350.47s

d-05 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 126 130 122 - / /
Search time / 2.33s 0.10s /* - 155.79s 154.22s
Model creation time - - - - - 387.68s 385.84s

d-06 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 151 173 163 - / /
Search time / 2.01s 0.14s /* - 186.73s 184.79s
Model creation time - - - - - 418.30s 425.50s

d-07 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 151 192 154 - / /
Search time / 1.63s 0.15s /* - 184.28s 201.88s
Model creation time - - - - - 458.19s 464.11s

d-08 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 169 192 199 - / /
Search time / 4.53s 0.42s /* - 358.69s 391.77s
Model creation time - - - - - 928.07s 941.88s

d-09 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 179 222 190 - / /
Search time / 3.75s 0.66s /* - 391.29s 437.76s
Model creation time - - - - - 1010.68s 1021.51s
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d-10 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 423 389 - / /
Search time / / 4.99s /* - 1399.21s 1409.40s
Model creation time - - - - - 3857.58s 3932.59s

d-11 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 354 408 350 - / /
Search time / 38.26s 17.71s /* - / /
Model creation time - - - - - / /

d-12 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 378 449 392 - / /
Search time / 49.10s 9.30s /* - / /
Model creation time - - - - - / /

d-13 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 335 / 381 - / /
Search time / 201.91s / /* - / /
Model creation time - - - - - / /

d-14 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 386 491 430 - / /
Search time / 163.38s 29.58s /* - / /
Model creation time - - - - - / /

d-15 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 521 486 - / /
Search time / / 39.71s /* - / /
Model creation time - - - - - / /

d-16 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 429 509 500 - / /
Search time / 751.95s 18.77s /* - / /
Model creation time - - - - - / /

d-17 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 411 / 420 - / /
Search time / 47.15s / /* - / /
Model creation time - - - - - / /

d-18 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 447 / 523 - / /
Search time / 1679.54s / /* - / /
Model creation time - - - - - / /

d-19 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 467 / 459 - / /
Search time / 705.29s / /* - / /
Model creation time - - - - - / /
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B.2.8 Tyreworld

d-01 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 19 19 19 19 19 / 19
Search time 0.01s 0.01s 0.01s 0.11s 2.68s 2.51s 2.14s
Model creation time - - - - 9.67s 8.37s 8.39s

d-02 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 30 36 30 30 30 / 30
Search time 0.54s 0.01s 0.01s 44.53s 6.52s 5.99s 5.87s
Model creation time - - - - 21.43s 18.66s 18.36s

d-03 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost 41 53 41 41 41 / 41
Search time 76.52s 0.12s 0.01s /* 10.50s 13.27s 10.61s
Model creation time - - - - 32.01s 28.60s 28.73s

d-04 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 70 52 52 52 / 52
Search time / 1.80s 0.02s /* 19.23s 19.57s 20.32s
Model creation time - - - - 49.30s 44.58s 44.51s

d-05 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 87 63 63 63 / 63
Search time / 25.31s 0.04s /* 33.35s 30.93s 32.83s
Model creation time - - - - 72.52s 65.11s 64.91s

d-06 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / 104 74 74 74 / 74
Search time / 274.55s 0.07s /* 41.74s 45.53s 49.11s
Model creation time - - - - 100.36s 90.13s 89.58s

d-07 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 85 85 85 / 85
Search time / / 0.14s /* 59.08s 59.06s 54.07s
Model creation time - - - - 132.24s 119.52s 119.90s

d-08 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 96 96 96 / 96
Search time / / 0.26s /* 81.91s 82.87s 76.25s
Model creation time - - - - 174.35s 154.70s 154.76s

d-09 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 107 107 107 / 107
Search time / / 0.44s /* 115.87s 110.15s 104.10s
Model creation time - - - - 217.35s 194.25s 193.91s
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d-10 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 118 118 118 / 118
Search time / / 0.74s /* 126.28s 133.02s 157.91s
Model creation time - - - - 267.42s 240.09s 239.61s

d-11 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 129 129 129 / 129
Search time / / 1.22s /* 158.14s 163.61s 159.69s
Model creation time - - - - 326.68s 292.62s 292.81s

d-12 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 140 140 140 / 140
Search time / / 2.07s /* 200.79s 193.29s 207.59s
Model creation time - - - - 394.53s 353.13s 353.47s

d-13 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 151 151 151 / 151
Search time / / 3.78s /* 242.20s 253.50s 245.16s
Model creation time - - - - 466.86s 418.36s 418.20s

d-14 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 162 162 162 / 162
Search time / / 6.40s /* 306.65s 288.69s 307.45s
Model creation time - - - - 559.37s 494.22s 496.71s

d-15 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 173 173 173 / 173
Search time / / 10.20s /* 314.63s 359.02s 357.88s
Model creation time - - - - 646.59s 576.80s 577.01s

d-16 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 184 184 184 / 184
Search time / / 15.81s /* 366.33s 485.35s 372.99s
Model creation time - - - - 760.59s 672.66s 672.18s

d-17 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 195 195 195 / 195
Search time / / 23.81s /* 398.60s 463.46s 431.19s
Model creation time - - - - 870.98s 768.91s 763.63s

d-18 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 206 206 206 / 206
Search time / / 34.06s /* 462.32s 544.74s 528.71s
Model creation time - - - - 1004.92s 889.39s 882.73s

d-19 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 217 217 217 / 217
Search time / / 48.07s /* 589.43s 660.99s 600.88s
Model creation time - - - - 1031.48s 1009.42s 1000.82s



96 APPENDIX B. EVALUATION

d-20 A∗ LM A∗ add GBFS LAMA ASNet LM ASNet add ASNet FF
Plan cost / / 228 228 228 / 228
Search time / / 66.01s /* 657.70s 658.12s 638.14s
Model creation time - - - - 1272.28s 1147.20s 1126.11s
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